IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v141y2020icp180-202.html
   My bibliography  Save this article

The effects of high-speed rail development on regional equity in China

Author

Listed:
  • Zhang, Fangni
  • Yang, Zhiwei
  • Jiao, Jingjuan
  • Liu, Wei
  • Wu, Wenjie

Abstract

This paper investigates the impacts of high-speed rail (HSR) development on regional equity in China during 2007–2017. The equity in terms of economic output and HSR service is characterized at national, divisional (Eastern, Central, and Western), and provincial levels. The Gini indices associated with prefectures’ gross regional product (GRP) per capita, HSR connectivity and accessibility are measured to assess disparity from different aspects. Instead of measuring the effect of HSR entry by a dummy variable representing the presence of HSR service only, this paper estimates the effects of HSR by various terms regarding the HSR presence, network coverage, service quality, and equity of HSR development. In particular, the HSR network coverage is captured by the number of prefectures connected to HSR. Service quality is characterized by the HSR connectivity (frequency of HSR services) and accessibility (average travel time and economic potential). The frequency and accessibility related metrics are further decomposed into two sub-variables representing the intra- and inter-provincial metrics to differentiate the service availability and travel time between prefectures in a same or different province(s). The influence between neighboring or adjoining provinces on each other’s economic equity is identified by spatial autocorrelation effect. Our main findings include: 1) National equity is gradually improved in terms of both GRP and HSR developments in China between 2007 and 2017; the provinces or divisions with larger GRP tend to be less equitable; 2) The inauguration of HSR has positive correlation with provincial equity; however, the positive effect diminishes with the spread of HSR coverage; 3) HSR accessibility (average travel time and economic potential) has more significant effect on provincial economic equity than frequency; 4) Effects of intra-provincial accessibility and connectivity (HSR service within the province) dominate inter-provincial metrics (services to other provinces); 5) The prosperous and balanced HSR development in neighboring provinces helps promote provincial economic equity of one another.

Suggested Citation

  • Zhang, Fangni & Yang, Zhiwei & Jiao, Jingjuan & Liu, Wei & Wu, Wenjie, 2020. "The effects of high-speed rail development on regional equity in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 180-202.
  • Handle: RePEc:eee:transa:v:141:y:2020:i:c:p:180-202
    DOI: 10.1016/j.tra.2020.09.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856420307230
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2020.09.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Zhenhua & Xue, Junbo & Rose, Adam Z. & Haynes, Kingsley E., 2016. "The impact of high-speed rail investment on economic and environmental change in China: A dynamic CGE analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 92(C), pages 232-245.
    2. Wan, Yulai & Ha, Hun-Koo & Yoshida, Yuichiro & Zhang, Anming, 2016. "Airlines’ reaction to high-speed rail entries: Empirical study of the Northeast Asian market," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 532-557.
    3. Tong, Tingting & Yu, Tun-Hsiang Edward & Cho, Seong-Hoon & Jensen, Kimberly & De La Torre Ugarte, Daniel, 2013. "Evaluating the spatial spillover effects of transportation infrastructure on agricultural output across the United States," Journal of Transport Geography, Elsevier, vol. 30(C), pages 47-55.
    4. Hou, Quan & Li, Si-Ming, 2011. "Transport infrastructure development and changing spatial accessibility in the Greater Pearl River Delta, China, 1990–2020," Journal of Transport Geography, Elsevier, vol. 19(6), pages 1350-1360.
    5. Vickerman, Roger, 2018. "Can high-speed rail have a transformative effect on the economy?," Transport Policy, Elsevier, vol. 62(C), pages 31-37.
    6. Xiaofang Dong & Siqi Zheng & Matthew E. Kahn, 2018. "The Role of Transportation Speed in Facilitating High Skilled Teamwork," NBER Working Papers 24539, National Bureau of Economic Research, Inc.
    7. Zhang, Anming & Wan, Yulai & Yang, Hangjun, 2019. "Impacts of high-speed rail on airlines, airports and regional economies: A survey of recent research," Transport Policy, Elsevier, vol. 81(C), pages 1-19.
    8. Baltagi, Badi H. & Levin, Dan, 1992. "Cigarette taxation: Raising revenues and reducing consumption," Structural Change and Economic Dynamics, Elsevier, vol. 3(2), pages 321-335, December.
    9. Xueping Wu & Ming Gao & Shihong Guo & Wei Li, 2019. "Effects of environmental regulation on air pollution control in China: a spatial Durbin econometric analysis," Journal of Regulatory Economics, Springer, vol. 55(3), pages 307-333, June.
    10. Jiao, Jingjuan & Wang, Jiaoe & Jin, Fengjun, 2017. "Impacts of high-speed rail lines on the city network in China," Journal of Transport Geography, Elsevier, vol. 60(C), pages 257-266.
    11. Chen, Chia-Lin & Hall, Peter, 2012. "The wider spatial-economic impacts of high-speed trains: a comparative case study of Manchester and Lille sub-regions," Journal of Transport Geography, Elsevier, vol. 24(C), pages 89-110.
    12. Qinghua Zhang & Heng-fu Zou, 2012. "Regional Inequality in Contemporary China," Annals of Economics and Finance, Society for AEF, vol. 13(1), pages 113-137, May.
    13. Chen, Zhenhua & Haynes, Kingsley E., 2015. "Impact of high speed rail on housing values: an observation from the Beijing–Shanghai line," Journal of Transport Geography, Elsevier, vol. 43(C), pages 91-100.
    14. Komei Sasaki & Tadahiro Ohashi & Asao Ando, 1997. "High-speed rail transit impact on regional systems: does the Shinkansen contribute to dispersion?," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 31(1), pages 77-98.
    15. James P. LeSage, 2014. "What Regional Scientists Need to Know about Spatial Econometrics," The Review of Regional Studies, Southern Regional Science Association, vol. 44(1), pages 13-32, Spring.
    16. Yu, Wenjing & Yao, Yansang, 2019. "The Route of Development in intra-regional Income Equality via High-Speed Rail: Evidence from China," 2019 Annual Meeting, July 21-23, Atlanta, Georgia 291299, Agricultural and Applied Economics Association.
    17. Chen, Zhenhua & Haynes, Kingsley E., 2017. "Impact of high-speed rail on regional economic disparity in China," Journal of Transport Geography, Elsevier, vol. 65(C), pages 80-91.
    18. Roger Vickerman & Klaus Spiekermann & Michael Wegener, 1999. "Accessibility and Economic Development in Europe," Regional Studies, Taylor & Francis Journals, vol. 33(1), pages 1-15.
    19. Yang, Zhiwei & Li, Can & Jiao, Jingjuan & Liu, Wei & Zhang, Fangni, 2020. "On the joint impact of high-speed rail and megalopolis policy on regional economic growth in China," Transport Policy, Elsevier, vol. 99(C), pages 20-30.
    20. Yu Qin, 2017. "‘No county left behind?’ The distributional impact of high-speed rail upgrades in China," Journal of Economic Geography, Oxford University Press, vol. 17(3), pages 489-520.
    21. Roger Vickerman, 1997. "High-speed rail in Europe: experience and issues for future development," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 31(1), pages 21-38.
    22. Sen, Amartya, 1973. "On Economic Inequality," OUP Catalogue, Oxford University Press, number 9780198281931.
    23. Mitze, Timo & Naveed, Amjad & Ahmad, Nisar, 2016. "International, intersectoral, or unobservable? Measuring R&D spillovers under weak and strong cross-sectional dependence," Journal of Macroeconomics, Elsevier, vol. 50(C), pages 259-272.
    24. Cullis, J. & van Koppen, Barbara, 2007. "Applying the Gini Coefficient to measure inequality of water use in the Olifants River water management area, South Africa," IWMI Research Reports H040313, International Water Management Institute.
    25. Arbués, Pelayo & Baños, José F. & Mayor, Matías, 2015. "The spatial productivity of transportation infrastructure," Transportation Research Part A: Policy and Practice, Elsevier, vol. 75(C), pages 166-177.
    26. Jiao, Jingjuan & Wang, Jiaoe & Zhang, Fangni & Jin, Fengjun & Liu, Wei, 2020. "Roles of accessibility, connectivity and spatial interdependence in realizing the economic impact of high-speed rail: Evidence from China," Transport Policy, Elsevier, vol. 91(C), pages 1-15.
    27. Zhang, Fangni & Graham, Daniel J. & Wong, Mark Siu Chun, 2018. "Quantifying the substitutability and complementarity between high-speed rail and air transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 191-215.
    28. Liu, Shuli & Wan, Yulai & Ha, Hun-Koo & Yoshida, Yuichiro & Zhang, Anming, 2019. "Impact of high-speed rail network development on airport traffic and traffic distribution: Evidence from China and Japan," Transportation Research Part A: Policy and Practice, Elsevier, vol. 127(C), pages 115-135.
    29. Mar González-Savignat, 2004. "Competition in Air Transport," Journal of Transport Economics and Policy, University of Bath, vol. 38(1), pages 77-107, January.
    30. Fangni Zhang & Daniel J. Graham, 2020. "Air transport and economic growth: a review of the impact mechanism and causal relationships," Transport Reviews, Taylor & Francis Journals, vol. 40(4), pages 506-528, July.
    31. John U. Farley & Donald R. Lehmann & Alan Sawyer, 1995. "Empirical Marketing Generalization Using Meta-Analysis," Marketing Science, INFORMS, vol. 14(3_supplem), pages 36-46.
    32. J. Elhorst, 2010. "Applied Spatial Econometrics: Raising the Bar," Spatial Economic Analysis, Taylor & Francis Journals, vol. 5(1), pages 9-28.
    33. Bai, Chong-En & Ma, Hong & Pan, Wenqing, 2012. "Spatial spillover and regional economic growth in China," China Economic Review, Elsevier, vol. 23(4), pages 982-990.
    34. Klaus Spiekermann & Michael Wegener, 2006. "Accessibility and spatial Development in Europe," SCIENZE REGIONALI, FrancoAngeli Editore, vol. 2006(2).
    35. Diao, Mi, 2018. "Does growth follow the rail? The potential impact of high-speed rail on the economic geography of China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 279-290.
    36. Cartenì, Armando & Pariota, Luigi & Henke, Ilaria, 2017. "Hedonic value of high-speed rail services: Quantitative analysis of the students’ domestic tourist attractiveness of the main Italian cities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 348-365.
    37. (Ato) Xu, Wangtu & Zhou, Jiangping & Yang, Linchuan & Li, Ling, 2018. "The implications of high-speed rail for Chinese cities: Connectivity and accessibility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 308-326.
    38. Behrens, Christiaan & Pels, Eric, 2012. "Intermodal competition in the London–Paris passenger market: High-Speed Rail and air transport," Journal of Urban Economics, Elsevier, vol. 71(3), pages 278-288.
    39. Willigers, Jasper & van Wee, Bert, 2011. "High-speed rail and office location choices. A stated choice experiment for the Netherlands," Journal of Transport Geography, Elsevier, vol. 19(4), pages 745-754.
    40. Jiao, Jingjuan & Wang, Jiaoe & Jin, Fengjun & Dunford, Michael, 2014. "Impacts on accessibility of China’s present and future HSR network," Journal of Transport Geography, Elsevier, vol. 40(C), pages 123-132.
    41. Chen, Chia-Lin & Hall, Peter, 2011. "The impacts of high-speed trains on British economic geography: a study of the UK’s InterCity 125/225 and its effects," Journal of Transport Geography, Elsevier, vol. 19(4), pages 689-704.
    42. Wang, Feng & Wei, Xianjin & Liu, Juan & He, Lingyun & Gao, Mengnan, 2019. "Impact of high-speed rail on population mobility and urbanisation: A case study on Yangtze River Delta urban agglomeration, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 127(C), pages 99-114.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Jingyang & Yang, Haoran, 2023. "Income allocation and distribution along with high-speed rail development in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).
    2. Xu, Guangming & Zhong, Linhuan & Hu, Xinlei & Liu, Wei, 2022. "Optimal pricing and seat allocation schemes in passenger railway systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    3. Rategh, Yalda & Tamannaei, Mohammad & Zarei, Hamid, 2022. "A game-theoretic approach to an oligopolistic transportation market: Coopetition between incumbent systems subject to the entrance threat of an HSR service," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 144-171.
    4. Wu, Yizhong & Lee, Chien-Chiang & Lee, Chi-Chuan & Peng, Diyun, 2022. "Geographic proximity and corporate investment efficiency: Evidence from high-speed rail construction in China," Journal of Banking & Finance, Elsevier, vol. 140(C).
    5. Xu, Guangming & Liu, Wei & Wu, Runfa & Yang, Hai, 2021. "A double time-scale passenger assignment model for high-speed railway networks with continuum capacity approximation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    6. Hiramatsu, Tomoru, 2023. "Inter-metropolitan regional migration galvanized by high-speed rail: A simulation analysis of the Linear Chuo Shinkansen line in Japan," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).
    7. Tanaka, Koichi, 2023. "Impacts of the opening of the maglev railway on daily accessibility in Japan: A comparative analysis with that of the Shinkansen," Journal of Transport Geography, Elsevier, vol. 106(C).
    8. Ren, Xiaohang & Zeng, Gudian & Dong, Kangyin & Wang, Kun, 2023. "How does high-speed rail affect tourism development? The case of the Sichuan-Chongqing Economic Circle," Transportation Research Part A: Policy and Practice, Elsevier, vol. 169(C).
    9. Xu, Guangming & Liu, Yihan & Gao, Yihan & Liu, Wei, 2023. "Integrated optimization of train stopping plan and seat allocation scheme for railway systems under equilibrium travel choice and elastic demand," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    10. Di Matteo, Dante & Cardinale, Bernardo, 2023. "Impact of high-speed rail on income inequalities in Italy," Journal of Transport Geography, Elsevier, vol. 111(C).
    11. Hu, Zhibin & Wu, Guangdong & Han, Yilong & Niu, Yanliang, 2023. "Unraveling the dynamic changes of high-speed rail network with urban development: Evidence from China," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiao, Jingjuan & Wang, Jiaoe & Zhang, Fangni & Jin, Fengjun & Liu, Wei, 2020. "Roles of accessibility, connectivity and spatial interdependence in realizing the economic impact of high-speed rail: Evidence from China," Transport Policy, Elsevier, vol. 91(C), pages 1-15.
    2. Yang, Zhiwei & Li, Can & Jiao, Jingjuan & Liu, Wei & Zhang, Fangni, 2020. "On the joint impact of high-speed rail and megalopolis policy on regional economic growth in China," Transport Policy, Elsevier, vol. 99(C), pages 20-30.
    3. Cascetta, Ennio & Cartenì, Armando & Henke, Ilaria & Pagliara, Francesca, 2020. "Economic growth, transport accessibility and regional equity impacts of high-speed railways in Italy: ten years ex post evaluation and future perspectives," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 412-428.
    4. Mohsen Momenitabar & Raj Bridgelall & Zhila Dehdari Ebrahimi & Mohammad Arani, 2021. "Literature Review of Socioeconomic and Environmental Impacts of High-Speed Rail in the World," Sustainability, MDPI, vol. 13(21), pages 1-27, November.
    5. Zhang, Anming & Wan, Yulai & Yang, Hangjun, 2019. "Impacts of high-speed rail on airlines, airports and regional economies: A survey of recent research," Transport Policy, Elsevier, vol. 81(C), pages 1-19.
    6. Sun, Xinyu & Yan, Sen & Liu, Tao & Wang, Jiayin, 2023. "The impact of high-speed rail on urban economy: Synergy with urban agglomeration policy," Transport Policy, Elsevier, vol. 130(C), pages 141-154.
    7. Li, Xiaolong & Wu, Zongfa & Zhao, Xingchen, 2020. "Economic effect and its disparity of high speed rail in China: A study of mechanism based on synthesis control method," Transport Policy, Elsevier, vol. 99(C), pages 262-274.
    8. Huang, Ying & Xu, Wangtu (Ato), 2021. "Spatial and temporal heterogeneity of the impact of high-speed railway on urban economy: Empirical study of Chinese cities," Journal of Transport Geography, Elsevier, vol. 91(C).
    9. Liu, Shuli & Wan, Yulai & Zhang, Anming, 2020. "Does China’s high-speed rail development lead to regional disparities? A network perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 299-321.
    10. Bo Yang & Yaping Yang & Yangxiaoyue Liu & Xiafang Yue, 2022. "Spatial Structure Evolution and Economic Benefits of Rapidly Expanding the High-Speed Rail Network in Developing Regions: A Case Study in Western China," Sustainability, MDPI, vol. 14(23), pages 1-20, November.
    11. Jin, Mengjie & Lin, Kun-Chin & Shi, Wenming & Lee, Paul T.W. & Li, Kevin X., 2020. "Impacts of high-speed railways on economic growth and disparity in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 158-171.
    12. Jun‐Teng Ma & Tie‐Ying Liu, 2022. "Does the high‐speed rail network improve economic growth?," Papers in Regional Science, Wiley Blackwell, vol. 101(1), pages 183-208, February.
    13. Gao, Yanyan & Zheng, Jianghuai & Wang, Xin, 2022. "Does high-speed rail reduce environmental pollution? Establishment-level evidence from China," Socio-Economic Planning Sciences, Elsevier, vol. 83(C).
    14. Li, Hui & Dong, Xiucheng & Jiang, Qingzhe & Dong, Kangyin, 2021. "Policy analysis for high-speed rail in China: Evolution, evaluation, and expectation," Transport Policy, Elsevier, vol. 106(C), pages 37-53.
    15. Li, Bin & Zhao, Qizi & Shahab, Yasir & Kumar, Satish, 2023. "High-speed rail construction and labor investment efficiency: Evidence from an emerging market," Research in International Business and Finance, Elsevier, vol. 64(C).
    16. Mohsen Momenitabar & Zhila Dehdari Ebrahimi & Mohammad Arani, 2020. "A Systematic and Analytical Review of the Socioeconomic and Environmental Impact of the Deployed High-Speed Rail (HSR) Systems on the World," Papers 2003.04452, arXiv.org, revised Mar 2020.
    17. Liu, Mengsha & Jiang, Yan & Wei, Xiaokun & Ruan, Qingsong & Lv, Dayong, 2023. "Effect of high-speed rail on entrepreneurial activities: Evidence from China," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    18. Jinxing Hu & Guojie Ma & Chaohai Shen & Xiaolan Zhou, 2022. "Impact of Urbanization through High-Speed Rail on Regional Development with the Interaction of Socioeconomic Factors: A View of Regional Industrial Structure," Land, MDPI, vol. 11(10), pages 1-21, October.
    19. Yu, Danlin & Zhang, Yaojun & Wu, Xiwei & Li, Ding & Li, Guangdong, 2021. "The varying effects of accessing high-speed rail system on China’s county development: A geographically weighted panel regression analysis," Land Use Policy, Elsevier, vol. 100(C).
    20. Wu, Shuping & Han, Dan, 2022. "Accessibility of high-speed rail (HSR) stations and HSR–air competition: Evidence from China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 262-284.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:141:y:2020:i:c:p:180-202. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.