IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v127y2019icp115-135.html
   My bibliography  Save this article

Impact of high-speed rail network development on airport traffic and traffic distribution: Evidence from China and Japan

Author

Listed:
  • Liu, Shuli
  • Wan, Yulai
  • Ha, Hun-Koo
  • Yoshida, Yuichiro
  • Zhang, Anming

Abstract

We explore the impacts of high-speed rail (HSR) development on airport-level traffic by considering not only the availability of air-HSR intermodal linkage between the airport and HSR station but also the position of the airport’s city in the HSR network. The latter is measured by both the degree centrality (to reflect connectivity) and the harmonic centrality (to reflect accessibility). Using a sample of 46 airports in China and a sample of 16 airports in Japan over the period of 2007–2015, we conduct regression analysis and compare the effects of HSR network development on airports in these two Northeast Asian countries. We find that as HSR connectivity or accessibility increases, there is, on average, a decline in airports’ domestic and total traffic in China but little change in Japan. Meanwhile, we observe a strong complementary effect of HSR to feed international flights with the presence of air-HSR intermodal linkage. As a result, some airports may experience a total traffic increase. In China, hub airports tend to gain traffic regardless the availability of air-HSR linkage, while non-hub airports are likely to lose. In Japan, on the other hand, airports with air-HSR linkage tend to gain traffic regardless the hub status. Our analysis also reveals some differentiated impacts of HSR connectivity and accessibility in China. An important policy implication is that the investment in air-HSR intermodal linkage at busy airports may not help with realizing the benefit of congestion mitigation and emission reduction. Rather, policy makers may invest air-HSR linkage at regional airports which have the potential to be converted into international gateway hubs.

Suggested Citation

  • Liu, Shuli & Wan, Yulai & Ha, Hun-Koo & Yoshida, Yuichiro & Zhang, Anming, 2019. "Impact of high-speed rail network development on airport traffic and traffic distribution: Evidence from China and Japan," Transportation Research Part A: Policy and Practice, Elsevier, vol. 127(C), pages 115-135.
  • Handle: RePEc:eee:transa:v:127:y:2019:i:c:p:115-135
    DOI: 10.1016/j.tra.2019.07.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856418308140
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2019.07.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dobruszkes, Frédéric & Dehon, Catherine & Givoni, Moshe, 2014. "Does European high-speed rail affect the current level of air services? An EU-wide analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 461-475.
    2. Dobruszkes, Frédéric, 2011. "High-speed rail and air transport competition in Western Europe: A supply-oriented perspective," Transport Policy, Elsevier, vol. 18(6), pages 870-879, November.
    3. Wan, Yulai & Ha, Hun-Koo & Yoshida, Yuichiro & Zhang, Anming, 2016. "Airlines’ reaction to high-speed rail entries: Empirical study of the Northeast Asian market," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 532-557.
    4. Moshe Givoni & Frédéric Dobruszkes, 2013. "A Review of Ex-Post Evidence for Mode Substitution and Induced Demand Following the Introduction of High-Speed Rail," ULB Institutional Repository 2013/152140, ULB -- Universite Libre de Bruxelles.
    5. Xiaowen Fu & Tae H. Oum & Jia Yan, 2014. "An Analysis of Travel Demand in Japan's Intercity Market Empirical Estimation and Policy Simulation," Journal of Transport Economics and Policy, University of Bath, vol. 48(1), pages 97-113, January.
    6. Randrianarisoa, Laingo Manitra & Bolduc, Denis & Choo, Yap Yin & Oum, Tae Hoon & Yan, Jia, 2015. "Effects of corruption on efficiency of the European airports," Transportation Research Part A: Policy and Practice, Elsevier, vol. 79(C), pages 65-83.
    7. Wang, Kun & Xia, Wenyi & Zhang, Anming, 2017. "Should China further expand its high-speed rail network? Consider the low-cost carrier factor," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 105-120.
    8. Moyano, Amparo & Martínez, Héctor S. & Coronado, José M., 2018. "From network to services: A comparative accessibility analysis of the Spanish high-speed rail system," Transport Policy, Elsevier, vol. 63(C), pages 51-60.
    9. Jiang, Changmin & Zhang, Anming, 2014. "Effects of high-speed rail and airline cooperation under hub airport capacity constraint," Transportation Research Part B: Methodological, Elsevier, vol. 60(C), pages 33-49.
    10. Jiao, Jingjuan & Wang, Jiaoe & Jin, Fengjun, 2017. "Impacts of high-speed rail lines on the city network in China," Journal of Transport Geography, Elsevier, vol. 60(C), pages 257-266.
    11. Albalate, Daniel & Fageda, Xavier, 2016. "High speed rail and tourism: Empirical evidence from Spain," Transportation Research Part A: Policy and Practice, Elsevier, vol. 85(C), pages 174-185.
    12. Xia, Wenyi & Zhang, Anming, 2017. "Air and high-speed rail transport integration on profits and welfare: Effects of air-rail connecting time," Journal of Air Transport Management, Elsevier, vol. 65(C), pages 181-190.
    13. Castillo-Manzano, José I. & Pozo-Barajas, Rafael & Trapero, Juan R., 2015. "Measuring the substitution effects between High Speed Rail and air transport in Spain," Journal of Transport Geography, Elsevier, vol. 43(C), pages 59-65.
    14. Takebayashi, Mikio, 2016. "How could the collaboration between airport and high speed rail affect the market?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 92(C), pages 277-286.
    15. Marchiori, Massimo & Latora, Vito, 2000. "Harmony in the small-world," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 285(3), pages 539-546.
    16. Clewlow, Regina R. & Sussman, Joseph M. & Balakrishnan, Hamsa, 2014. "The impact of high-speed rail and low-cost carriers on European air passenger traffic," Transport Policy, Elsevier, vol. 33(C), pages 136-143.
    17. Jiang, Changmin & Zhang, Anming, 2016. "Airline network choice and market coverage under high-speed rail competition," Transportation Research Part A: Policy and Practice, Elsevier, vol. 92(C), pages 248-260.
    18. Moshe Givoni & Frédéric Dobruszkes, 2013. "A Review of Ex-Post Evidence for Mode Substitution and Induced Demand Following the Introduction of High-Speed Rail," Transport Reviews, Taylor & Francis Journals, vol. 33(6), pages 720-742, November.
    19. Chen, Zhenhua, 2017. "Impacts of high-speed rail on domestic air transportation in China," Journal of Transport Geography, Elsevier, vol. 62(C), pages 184-196.
    20. Zhang, Qiong & Yang, Hangjun & Wang, Qiang, 2017. "Impact of high-speed rail on China’s Big Three airlines," Transportation Research Part A: Policy and Practice, Elsevier, vol. 98(C), pages 77-85.
    21. Wang, Kun & Xia, Wenyi & Zhang, Anming & Zhang, Qiong, 2018. "Effects of train speed on airline demand and price: Theory and empirical evidence from a natural experiment," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 99-130.
    22. Adler, Nicole & Liebert, Vanessa, 2014. "Joint impact of competition, ownership form and economic regulation on airport performance and pricing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 64(C), pages 92-109.
    23. Ito, Harumi & Lee, Darin, 2005. "Assessing the impact of the September 11 terrorist attacks on U.S. airline demand," Journal of Economics and Business, Elsevier, vol. 57(1), pages 75-95.
    24. Bilotkach, Volodymyr & Fageda, Xavier & Flores-Fillol, Ricardo, 2010. "Scheduled service versus personal transportation: The role of distance," Regional Science and Urban Economics, Elsevier, vol. 40(1), pages 60-72, January.
    25. Fumiaki Demizu & Yeun-Touh Li & Jan-Dirk Schmöcker & Toshiyuki Nakamura & Nobuhiro Uno, 2017. "Long-term impact of the Shinkansen on rail and air demand: analysis with data from Northeast Japan," Transportation Planning and Technology, Taylor & Francis Journals, vol. 40(7), pages 741-756, October.
    26. Wong, W.H. & Cheung, Tommy & Zhang, Anming & Wang, Yue, 2019. "Is spatial dispersal the dominant trend in air transport development? A global analysis for 2006–2015," Journal of Air Transport Management, Elsevier, vol. 74(C), pages 1-12.
    27. Amparo Moyano & Ana Rivas & Jose M. Coronado, 2019. "Business and tourism high-speed rail same-day trips: factors influencing the efficiency of high-speed rail links for Spanish cities," European Planning Studies, Taylor & Francis Journals, vol. 27(3), pages 533-554, March.
    28. Fu, Xiaowen & Zhang, Anming & Lei, Zheng, 2012. "Will China’s airline industry survive the entry of high-speed rail?," Research in Transportation Economics, Elsevier, vol. 35(1), pages 13-25.
    29. Vespermann, Jan & Wald, Andreas, 2011. "Intermodal integration in air transportation: status quo, motives and future developments," Journal of Transport Geography, Elsevier, vol. 19(6), pages 1187-1197.
    30. Frédéric Dobruszkes, 2011. "High-speed rail and air transport competition in Western Europe: A supply-oriented perspective," ULB Institutional Repository 2013/96164, ULB -- Universite Libre de Bruxelles.
    31. Zhang, Fangni & Graham, Daniel J. & Wong, Mark Siu Chun, 2018. "Quantifying the substitutability and complementarity between high-speed rail and air transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 191-215.
    32. Givoni, Moshe & Banister, David, 2006. "Airline and railway integration," Transport Policy, Elsevier, vol. 13(5), pages 386-397, September.
    33. Wang, Jiaoe & Mo, Huihui & Wang, Fahui & Jin, Fengjun, 2011. "Exploring the network structure and nodal centrality of China’s air transport network: A complex network approach," Journal of Transport Geography, Elsevier, vol. 19(4), pages 712-721.
    34. Albalate, Daniel & Bel, Germà & Fageda, Xavier, 2015. "Competition and cooperation between high-speed rail and air transportation services in Europe," Journal of Transport Geography, Elsevier, vol. 42(C), pages 166-174.
    35. Takebayashi, Mikio, 2018. "Managing airport charges under the multiple hub network with high speed rail: Considering capacity and gateway function," Transportation Research Part A: Policy and Practice, Elsevier, vol. 112(C), pages 108-123.
    36. (Ato) Xu, Wangtu & Zhou, Jiangping & Yang, Linchuan & Li, Ling, 2018. "The implications of high-speed rail for Chinese cities: Connectivity and accessibility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 308-326.
    37. Behrens, Christiaan & Pels, Eric, 2012. "Intermodal competition in the London–Paris passenger market: High-Speed Rail and air transport," Journal of Urban Economics, Elsevier, vol. 71(3), pages 278-288.
    38. Avenali, Alessandro & Bracaglia, Valentina & D'Alfonso, Tiziana & Reverberi, Pierfrancesco, 2018. "Strategic formation and welfare effects of airline-high speed rail agreements," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 393-411.
    39. Park, Yonghwa & Ha, Hun-Koo, 2006. "Analysis of the impact of high-speed railroad service on air transport demand," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 42(2), pages 95-104, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Anming & Wan, Yulai & Yang, Hangjun, 2019. "Impacts of high-speed rail on airlines, airports and regional economies: A survey of recent research," Transport Policy, Elsevier, vol. 81(C), pages 1-19.
    2. Wang, Jiaoe & Huang, Jie & Jing, Yue, 2020. "Competition between high-speed trains and air travel in China: From a spatial to spatiotemporal perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 62-78.
    3. Wang, Wei & Sun, Huijun & Wu, Jianjun, 2020. "How does the decision of high-speed rail operator affect social welfare? Considering competition between high-speed rail and air transport," Transport Policy, Elsevier, vol. 88(C), pages 1-15.
    4. Xia, Wenyi & Jiang, Changmin & Wang, Kun & Zhang, Anming, 2019. "Air-rail revenue sharing in a multi-airport system: Effects on traffic and social welfare," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 304-319.
    5. Xia, Wenyi & Zhang, Anming, 2016. "High-speed rail and air transport competition and cooperation: A vertical differentiation approach," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 456-481.
    6. Chen, Zhe & Wang, Zhengli & Jiang, Hai, 2019. "Analyzing the heterogeneous impacts of high-speed rail entry on air travel in China: A hierarchical panel regression approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 127(C), pages 86-98.
    7. Asep Yayat Nurhidayat & Hera Widyastuti & Sutikno & Dwi Phalita Upahita, 2023. "Research on Passengers’ Preferences and Impact of High-Speed Rail on Air Transport Demand," Sustainability, MDPI, vol. 15(4), pages 1-26, February.
    8. Chen, Zhenhua, 2017. "Impacts of high-speed rail on domestic air transportation in China," Journal of Transport Geography, Elsevier, vol. 62(C), pages 184-196.
    9. Hong, Seock-Jin & Najmi, Hossein, 2022. "Impact of High-speed rail on air travel demand between Dallas and Houston applying Monte Carlo simulation," Journal of Air Transport Management, Elsevier, vol. 102(C).
    10. Zhu, Feng & Wu, Xu & Cao, Chengxuan, 2021. "High-speed rail and air transport competition under high flight delay conditions in China: A case study of the Beijing-Shanghai corridor," Utilities Policy, Elsevier, vol. 71(C).
    11. Su, Min & Luan, Weixin & Fu, Xiaowen & Yang, Zaili & Zhang, Rui, 2020. "The competition effects of low-cost carriers and high-speed rail on the Chinese aviation market," Transport Policy, Elsevier, vol. 95(C), pages 37-46.
    12. Gu, Hongyi & Wan, Yulai, 2020. "Can entry of high-speed rail increase air traffic? Price competition, travel time difference and catchment expansion," Transport Policy, Elsevier, vol. 97(C), pages 55-72.
    13. Yang, Hangjun & Ma, Wenliang & Wang, Qiang & Wang, Kun & Zhang, Yahua, 2020. "Welfare implications for air passengers in China in the era of high-speed rail," Transport Policy, Elsevier, vol. 95(C), pages 1-13.
    14. Su, Min & Luan, Weixin & Sun, Tianyao, 2019. "Effect of high-speed rail competition on airlines’ intertemporal price strategies," Journal of Air Transport Management, Elsevier, vol. 80(C), pages 1-1.
    15. Huang, Yan & Zong, Huiming, 2022. "The intercity railway connections in China: A comparative analysis of high-speed train and conventional train services," Transport Policy, Elsevier, vol. 120(C), pages 89-103.
    16. Min Su & Weixin Luan & Zeyang Li & Shulin Wan & Zhenchao Zhang, 2019. "Evolution and Determinants of an Air Transport Network: A Case Study of the Chinese Main Air Transport Network," Sustainability, MDPI, vol. 11(14), pages 1-20, July.
    17. Li, Zhi-Chun & Tu, Ningwen & Fu, Xiaowen & Sheng, Dian, 2022. "Modeling the effects of airline and high-speed rail cooperation on multi-airport systems: The implications on congestion, competition and social welfare," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 448-478.
    18. Wu, Shuping & Han, Dan, 2022. "Accessibility of high-speed rail (HSR) stations and HSR–air competition: Evidence from China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 262-284.
    19. Zhu, Zhenran & Zhang, Anming & Zhang, Yahua, 2018. "Connectivity of intercity passenger transportation in China: A multi-modal and network approach," Journal of Transport Geography, Elsevier, vol. 71(C), pages 263-276.
    20. Daniel Albalate & Germá Bel, 2015. "La experiencia internacional en alta velocidad ferroviaria," Working Papers 2015-02, FEDEA.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:127:y:2019:i:c:p:115-135. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.