IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v100y2017icp294-310.html
   My bibliography  Save this article

A time-dependent stated preference approach to measuring vehicle type preferences and market elasticity of conventional and green vehicles

Author

Listed:
  • Cirillo, Cinzia
  • Liu, Yan
  • Maness, Michael

Abstract

The diversity of new vehicle technology and fuel markets, the governments’ sustainable call to reduce energy consumption and air pollution lead to a change in the personal vehicle market. Considering the impact of these factors, a stated preference survey approach is adopted to analyze household future preferences for gasoline, hybrid electric, and battery electric vehicles in a dynamic marketplace. The stated choice experiment places respondents in a nine-year hypothetical time window with dynamically changing attributes including vehicle purchasing price, fuel economy, recharging range, and fuel price. A web-based survey was performed during 2014 in the state of Maryland. The collected data include household social-demographics, primary vehicle characteristics, and vehicle purchasing preferences of 456 respondents during the year of 2014–2022. Mixed Multinomial logit (MMNL) models are employed to predict vehicle preferences based on households’ socio-demographics and vehicle characteristics. The estimation results show that young people are more likely to buy vehicles with new technology, especially battery electric vehicles (BEV). Women with a high education level (bachelor degree or higher) prefer to choose hybrid electric vehicle (HEV) while men with a high education level are more likely to buy BEV. The estimated vehicle market elasticities with respect to vehicle price are from −1.1 to −1.8 for HEV and BEV, higher than those for gasoline vehicles from −0.6 to −1.0. The vehicle market cross-elasticities estimated by MMNL models range from 0.2 to 0.6. In addition, willingness to pay (WTP) of vehicle characteristics estimated by MMNL models provide a good understanding of household future vehicle preferences.

Suggested Citation

  • Cirillo, Cinzia & Liu, Yan & Maness, Michael, 2017. "A time-dependent stated preference approach to measuring vehicle type preferences and market elasticity of conventional and green vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 294-310.
  • Handle: RePEc:eee:transa:v:100:y:2017:i:c:p:294-310
    DOI: 10.1016/j.tra.2017.04.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856416301483
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2017.04.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Espey, Molly, 1998. "Gasoline demand revisited: an international meta-analysis of elasticities," Energy Economics, Elsevier, vol. 20(3), pages 273-295, June.
    2. Anonymous, 1991. "The Automobile Industry," Business History Review, Cambridge University Press, vol. 65(4), pages 1-1, January.
    3. Dargay, Joyce & Gately, Dermot, 1997. "The demand for transportation fuels: Imperfect price-reversibility?," Transportation Research Part B: Methodological, Elsevier, vol. 31(1), pages 71-82, February.
    4. McCarthy, Patrick S, 1996. "Market Price and Income Elasticities of New Vehicles Demand," The Review of Economics and Statistics, MIT Press, vol. 78(3), pages 543-547, August.
    5. Golob, Thomas F & Bunch, David S & Brownstone, David, 1997. "A Vehicle Use Forecasting Model Based on Revealed and Stated Vehicle Type Choice and Utilisation Data," University of California Transportation Center, Working Papers qt2bz335vw, University of California Transportation Center.
    6. Axsen, Jonn & Kurani, Kenneth S., 2013. "Hybrid, plug-in hybrid, or electric—What do car buyers want?," Energy Policy, Elsevier, vol. 61(C), pages 532-543.
    7. Bunch, David S. & Bradley, Mark & Golob, Thomas F. & Kitamura, Ryuichi & Occhiuzzo, Gareth P., 1993. "Demand for clean-fuel vehicles in California: A discrete-choice stated preference pilot project," Transportation Research Part A: Policy and Practice, Elsevier, vol. 27(3), pages 237-253, May.
    8. Aizaki, Hideo, 2012. "Basic Functions for Supporting an Implementation of Choice Experiments in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 50(c02).
    9. Brownstone, David & Bunch, David S. & Train, Kenneth, 2000. "Joint mixed logit models of stated and revealed preferences for alternative-fuel vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 34(5), pages 315-338, June.
    10. Brownstone, David & Bunch, David S. & Train, Kenneth, 2000. "Joint mixed logit models of stated and revealed preferences for alternative-fuel vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 34(5), pages 315-338, June.
    11. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521747387.
    12. Yamamoto, Toshiyuki & Madre, Jean-Loup & Kitamura, Ryuichi, 2004. "An analysis of the effects of French vehicle inspection program and grant for scrappage on household vehicle transaction," Transportation Research Part B: Methodological, Elsevier, vol. 38(10), pages 905-926, December.
    13. Gallagher, Kelly Sims & Muehlegger, Erich, 2011. "Giving green to get green? Incentives and consumer adoption of hybrid vehicle technology," Journal of Environmental Economics and Management, Elsevier, vol. 61(1), pages 1-15, January.
    14. Aurélie Glerum & Lidija Stankovikj & Michaël Thémans & Michel Bierlaire, 2014. "Forecasting the Demand for Electric Vehicles: Accounting for Attitudes and Perceptions," Transportation Science, INFORMS, vol. 48(4), pages 483-499, November.
    15. James Levinsohn, 1988. "Empirics of Taxes on Differentiated Products: The Case of Tariffs in the U.S. Automobile Industry," NBER Chapters, in: Trade Policy Issues and Empirical Analysis, pages 9-44, National Bureau of Economic Research, Inc.
    16. Chandra R. Bhat, 2000. "Incorporating Observed and Unobserved Heterogeneity in Urban Work Travel Mode Choice Modeling," Transportation Science, INFORMS, vol. 34(2), pages 228-238, May.
    17. Fred Mannering & Clifford Winston, 1985. "A Dynamic Empirical Analysis of Household Vehicle Ownership and Utilization," RAND Journal of Economics, The RAND Corporation, vol. 16(2), pages 215-236, Summer.
    18. Giuliano, Genevieve & Dargay, Joyce, 2006. "Car ownership, travel and land use: a comparison of the US and Great Britain," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(2), pages 106-124, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rosales-Tristancho, Abel & Brey, Raúl & Carazo, Ana F. & Brey, J. Javier, 2022. "Analysis of the barriers to the adoption of zero-emission vehicles in Spain," Transportation Research Part A: Policy and Practice, Elsevier, vol. 158(C), pages 19-43.
    2. Bas, Javier & Zofío, José L. & Cirillo, Cinzia & Chen, Hao & Rakha, Hesham A., 2022. "Policy and industry implications of the potential market penetration of electric vehicles with eco-cooperative adaptive cruise control," Transportation Research Part A: Policy and Practice, Elsevier, vol. 164(C), pages 242-256.
    3. Milad Haghani & Michiel C. J. Bliemer & John M. Rose & Harmen Oppewal & Emily Lancsar, 2021. "Hypothetical bias in stated choice experiments: Part I. Integrative synthesis of empirical evidence and conceptualisation of external validity," Papers 2102.02940, arXiv.org.
    4. Tan, Yang & Fukuda, Hiroatsu & Li, Zhang & Wang, Shuai & Gao, Weijun & Liu, Zhonghui, 2022. "Does the public support the construction of battery swapping station for battery electric vehicles? - Data from Hangzhou, China," Energy Policy, Elsevier, vol. 163(C).
    5. Long, Zoe & Kormos, Christine & Sussman, Reuven & Axsen, Jonn, 2021. "MPG, fuel costs, or savings? Exploring the role of information framing in consumer valuation of fuel economy using a choice experiment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 146(C), pages 109-127.
    6. Bansal, Prateek & Kumar, Rajeev Ranjan & Raj, Alok & Dubey, Subodh & Graham, Daniel J., 2021. "Willingness to pay and attitudinal preferences of Indian consumers for electric vehicles," Energy Economics, Elsevier, vol. 100(C).
    7. Rahmani, Djamel & Loureiro, Maria L., 2019. "Assessing drivers’ preferences for hybrid electric vehicles (HEV) in Spain," Research in Transportation Economics, Elsevier, vol. 73(C), pages 89-97.
    8. Aravena, C. & Denny, E., 2021. "The impact of learning and short-term experience on preferences for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    9. Gaofeng Gu & Xiaofeng Pan, 2023. "A Study on the Interdependence in Sustainable Mobility Tools and Home Energy Equipment Choices," Energies, MDPI, vol. 16(3), pages 1-16, January.
    10. Liu, Yan & Cirillo, Cinzia, 2018. "A generalized dynamic discrete choice model for green vehicle adoption," Transportation Research Part A: Policy and Practice, Elsevier, vol. 114(PB), pages 288-302.
    11. Dong, Feng & Liu, Yajie, 2020. "Policy evolution and effect evaluation of new-energy vehicle industry in China," Resources Policy, Elsevier, vol. 67(C).
    12. Loría, Luis Enrique & Watson, Verity & Kiso, Takahiko & Phimister, Euan, 2019. "Investigating users' preferences for Low Emission Buses: Experiences from Europe's largest hydrogen bus fleet," Journal of choice modelling, Elsevier, vol. 32(C), pages 1-1.
    13. Gabriela D. Oliveira & Luis C. Dias, 2019. "Influence of Demographics on Consumer Preferences for Alternative Fuel Vehicles: A Review of Choice Modelling Studies and a Study in Portugal," Energies, MDPI, vol. 12(2), pages 1-33, January.
    14. Jia, Wenjian & Chen, T. Donna, 2023. "Investigating heterogeneous preferences for plug-in electric vehicles: Policy implications from different choice models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    15. Mallikarjun Patil & Bandhan Bandhu Majumdar & Prasanta Kumar Sahu & Long T. Truong, 2021. "Evaluation of Prospective Users’ Choice Decision toward Electric Two-Wheelers Using a Stated Preference Survey: An Indian Perspective," Sustainability, MDPI, vol. 13(6), pages 1-22, March.
    16. Fatemeh Nazari & Abolfazl Mohammadian & Thomas Stephens, 2023. "Exploring the Role of Perceived Range Anxiety in Adoption Behavior of Plug-in Electric Vehicles," Papers 2308.10313, arXiv.org.
    17. Prateek Bansal & Rajeev Ranjan Kumar & Alok Raj & Subodh Dubey & Daniel J. Graham, 2021. "Willingness to Pay and Attitudinal Preferences of Indian Consumers for Electric Vehicles," Papers 2101.08008, arXiv.org, revised May 2021.
    18. Hackbarth, André & Madlener, Reinhard, 2018. "Combined Vehicle Type and Fuel Type Choices of Private Households: An Empirical Analysis for Germany," FCN Working Papers 17/2018, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN), revised May 2019.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Al-Alawi, Baha M. & Bradley, Thomas H., 2013. "Review of hybrid, plug-in hybrid, and electric vehicle market modeling Studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 190-203.
    2. Achtnicht, Martin & Bühler, Georg & Hermeling, Claudia, 2008. "Impact of Service Station Networks on Purchase Decisions of Alternative-fuel Vehicles," ZEW Discussion Papers 08-088, ZEW - Leibniz Centre for European Economic Research.
    3. Martin Achtnicht, 2012. "German car buyers’ willingness to pay to reduce CO 2 emissions," Climatic Change, Springer, vol. 113(3), pages 679-697, August.
    4. Rotaris, Lucia & Giansoldati, Marco & Scorrano, Mariangela, 2021. "The slow uptake of electric cars in Italy and Slovenia. Evidence from a stated-preference survey and the role of knowledge and environmental awareness," Transportation Research Part A: Policy and Practice, Elsevier, vol. 144(C), pages 1-18.
    5. Petschnig, Martin & Heidenreich, Sven & Spieth, Patrick, 2014. "Innovative alternatives take action – Investigating determinants of alternative fuel vehicle adoption," Transportation Research Part A: Policy and Practice, Elsevier, vol. 61(C), pages 68-83.
    6. Deka, Devajyoti & Carnegie, Jon, 2021. "Predicting transit mode choice of New Jersey workers commuting to New York City from a stated preference survey," Journal of Transport Geography, Elsevier, vol. 91(C).
    7. Tamara L. Sheldon & J. R. DeShazo & Richard T. Carson, 2017. "Electric And Plug-In Hybrid Vehicle Demand: Lessons For An Emerging Market," Economic Inquiry, Western Economic Association International, vol. 55(2), pages 695-713, April.
    8. Axsen, Jonn & Mountain, Dean C. & Jaccard, Mark, 2009. "Combining stated and revealed choice research to simulate the neighbor effect: The case of hybrid-electric vehicles," Resource and Energy Economics, Elsevier, vol. 31(3), pages 221-238, August.
    9. Anders F. Jensen & Elisabetta Cherchi & Stefan L. Mabit & Juan de Dios Ortúzar, 2017. "Predicting the Potential Market for Electric Vehicles," Transportation Science, INFORMS, vol. 51(2), pages 427-440, May.
    10. Hackbarth, André & Madlener, Reinhard, 2016. "Willingness-to-pay for alternative fuel vehicle characteristics: A stated choice study for Germany," Transportation Research Part A: Policy and Practice, Elsevier, vol. 85(C), pages 89-111.
    11. Daina, Nicolò & Sivakumar, Aruna & Polak, John W., 2017. "Modelling electric vehicles use: a survey on the methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 447-460.
    12. Makena Coffman & Paul Bernstein & Sherilyn Wee, 2017. "Electric vehicles revisited: a review of factors that affect adoption," Transport Reviews, Taylor & Francis Journals, vol. 37(1), pages 79-93, January.
    13. Bhat, Chandra R. & Sen, Sudeshna & Eluru, Naveen, 2009. "The impact of demographics, built environment attributes, vehicle characteristics, and gasoline prices on household vehicle holdings and use," Transportation Research Part B: Methodological, Elsevier, vol. 43(1), pages 1-18, January.
    14. Mariel, Petr & Ayala, Amaya de & Hoyos, David & Abdullah, Sabah, 2013. "Selecting random parameters in discrete choice experiment for environmental valuation: A simulation experiment," Journal of choice modelling, Elsevier, vol. 7(C), pages 44-57.
    15. Ricardo A. Daziano & Martin Achtnicht, 2014. "Forecasting Adoption of Ultra-Low-Emission Vehicles Using Bayes Estimates of a Multinomial Probit Model and the GHK Simulator," Transportation Science, INFORMS, vol. 48(4), pages 671-683, November.
    16. John Rose & Iain Black, 2006. "Means matter, but variance matter too: Decomposing response latency influences on variance heterogeneity in stated preference experiments," Marketing Letters, Springer, vol. 17(4), pages 295-310, December.
    17. Jang, Sungsoon & Choi, Jae Young, 2021. "Which consumer attributes will act crucial roles for the fast market adoption of electric vehicles?: Estimation on the asymmetrical & heterogeneous consumer preferences on the EVs," Energy Policy, Elsevier, vol. 156(C).
    18. Mau, Paulus & Eyzaguirre, Jimena & Jaccard, Mark & Collins-Dodd, Colleen & Tiedemann, Kenneth, 2008. "The 'neighbor effect': Simulating dynamics in consumer preferences for new vehicle technologies," Ecological Economics, Elsevier, vol. 68(1-2), pages 504-516, December.
    19. Cartenì, Armando & Cascetta, Ennio & de Luca, Stefano, 2016. "A random utility model for park & carsharing services and the pure preference for electric vehicles," Transport Policy, Elsevier, vol. 48(C), pages 49-59.
    20. Karsten Kieckhäfer & Thomas Volling & Thomas Stefan Spengler, 2014. "A Hybrid Simulation Approach for Estimating the Market Share Evolution of Electric Vehicles," Transportation Science, INFORMS, vol. 48(4), pages 651-670, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:100:y:2017:i:c:p:294-310. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.