IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v170y2021ics0040162521003607.html
   My bibliography  Save this article

Technology progress bias, industrial structure adjustment, and regional industrial economic growth motivation —— Research on regional industrial transformation and upgrading based on the effect of learning by doing

Author

Listed:
  • Zhu, Weiwei
  • Zhu, Yaqin
  • Lin, Huaping
  • Yu, Yu

Abstract

In the new normal economy and under supply-side structural reform progress, industry has become the pillar of economic development, thus making it urgent to adjust and upgrade a country's industrial structure both scientifically and effectively. During the process of industrial transformation and development, technical progress is the key driving force, and for China, technical changes in the industrial sector began during the 12th Five-Year Plan (FYP) (2011–2015). Thus, this paper improves the decomposition of the traditional Malmquist DEA index to distinguish and quantify the effects of independent innovation and learning by doing and analyzes the impact of R&D and learning by doing on regional industrial development during the 12th FYP. Findings reveal consistency between the effect of “learning by doing” and “independent innovation” in technical progress during the 12th FYP, and the overall trend shows a V-shaped decline first and then later an increase. The heterogeneity of industrial structure in domestic regional economies present differences in independent innovation and learning by doing, among which the northeast region is highly sensitive to the effect of learning by doing. Therefore, strengthening the training of production departments and improving employee productivity are two key tasks in the northeast region.

Suggested Citation

  • Zhu, Weiwei & Zhu, Yaqin & Lin, Huaping & Yu, Yu, 2021. "Technology progress bias, industrial structure adjustment, and regional industrial economic growth motivation —— Research on regional industrial transformation and upgrading based on the effect of lea," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
  • Handle: RePEc:eee:tefoso:v:170:y:2021:i:c:s0040162521003607
    DOI: 10.1016/j.techfore.2021.120928
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162521003607
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2021.120928?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Du, Juan & Chen, Yao & Huang, Ying, 2018. "A Modified Malmquist-Luenberger Productivity Index: Assessing Environmental Productivity Performance in China," European Journal of Operational Research, Elsevier, vol. 269(1), pages 171-187.
    2. Duan, Na & Guo, Jun-Peng & Xie, Bai-Chen, 2016. "Is there a difference between the energy and CO2 emission performance for China’s thermal power industry? A bootstrapped directional distance function approach," Applied Energy, Elsevier, vol. 162(C), pages 1552-1563.
    3. Barros, Carlos P. & Guironnet, Jean-Pascal & Peypoch, Nicolas, 2011. "Productivity growth and biased technical change in French higher education," Economic Modelling, Elsevier, vol. 28(1-2), pages 641-646, January.
    4. Dong-hyun Oh, 2010. "A global Malmquist-Luenberger productivity index," Journal of Productivity Analysis, Springer, vol. 34(3), pages 183-197, December.
    5. Young, Alwyn, 1993. "Invention and Bounded Learning by Doing," Journal of Political Economy, University of Chicago Press, vol. 101(3), pages 443-472, June.
    6. Adam B. Jaffe & Karen Palmer, 1997. "Environmental Regulation And Innovation: A Panel Data Study," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 610-619, November.
    7. Usman, Umer & Batabyal, Amitrajeet A., 2014. "Goods production, learning by doing, and growth in a region with creative and physical capital," International Review of Economics & Finance, Elsevier, vol. 33(C), pages 92-99.
    8. Managi, Shunsuke & Opaluch, James J. & Jin, Di & Grigalunas, Thomas A., 2004. "Technological change and depletion in offshore oil and gas," Journal of Environmental Economics and Management, Elsevier, vol. 47(2), pages 388-409, March.
    9. L. Rachel Ngai & Christopher A. Pissarides, 2007. "Structural Change in a Multisector Model of Growth," American Economic Review, American Economic Association, vol. 97(1), pages 429-443, March.
    10. Caves, Douglas W & Christensen, Laurits R & Diewert, W Erwin, 1982. "The Economic Theory of Index Numbers and the Measurement of Input, Output, and Productivity," Econometrica, Econometric Society, vol. 50(6), pages 1393-1414, November.
    11. K. J. Arrow, 1971. "The Economic Implications of Learning by Doing," Palgrave Macmillan Books, in: F. H. Hahn (ed.), Readings in the Theory of Growth, chapter 11, pages 131-149, Palgrave Macmillan.
    12. Chen, Yao, 2003. "A non-radial Malmquist productivity index with an illustrative application to Chinese major industries," International Journal of Production Economics, Elsevier, vol. 83(1), pages 27-35, January.
    13. Mohsen Afsharian & Heinz Ahn, 2015. "The overall Malmquist index: a new approach for measuring productivity changes over time," Annals of Operations Research, Springer, vol. 226(1), pages 1-27, March.
    14. Brunnermeier, Smita B. & Cohen, Mark A., 2003. "Determinants of environmental innovation in US manufacturing industries," Journal of Environmental Economics and Management, Elsevier, vol. 45(2), pages 278-293, March.
    15. Chuang, Yih-Chyi, 1998. "Learning by Doing, the Technology Gap, and Growth," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(3), pages 697-721, August.
    16. Pastor, Jesus T. & Lovell, C.A. Knox, 2005. "A global Malmquist productivity index," Economics Letters, Elsevier, vol. 88(2), pages 266-271, August.
    17. Berg, Sigbjorn Atle & Forsund, Finn R & Jansen, Eilev S, 1992. " Malmquist Indices of Productivity Growth during the Deregulation of Norwegian Banking, 1980-89," Scandinavian Journal of Economics, Wiley Blackwell, vol. 94(0), pages 211-228, Supplemen.
    18. Wang, Ke & Wei, Yi-Ming, 2014. "China’s regional industrial energy efficiency and carbon emissions abatement costs," Applied Energy, Elsevier, vol. 130(C), pages 617-631.
    19. G Tohidi & S Razavyan & S Tohidnia, 2012. "A global cost Malmquist productivity index using data envelopment analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 63(1), pages 72-78, January.
    20. Wu, Jie & Zhu, Qingyuan & Liang, Liang, 2016. "CO2 emissions and energy intensity reduction allocation over provincial industrial sectors in China," Applied Energy, Elsevier, vol. 166(C), pages 282-291.
    21. Caves, Douglas W & Christensen, Laurits R & Diewert, W Erwin, 1982. "Multilateral Comparisons of Output, Input, and Productivity Using Superlative Index Numbers," Economic Journal, Royal Economic Society, vol. 92(365), pages 73-86, March.
    22. Wang, Ke & Wei, Yi-Ming & Zhang, Xian, 2013. "Energy and emissions efficiency patterns of Chinese regions: A multi-directional efficiency analysis," Applied Energy, Elsevier, vol. 104(C), pages 105-116.
    23. Chen, Yao & Iqbal Ali, Agha, 2004. "DEA Malmquist productivity measure: New insights with an application to computer industry," European Journal of Operational Research, Elsevier, vol. 159(1), pages 239-249, November.
    24. Fare, Rolf & Grosskopf, Shawna & Norris, Mary, 1997. "Productivity Growth, Technical Progress, and Efficiency Change in Industrialized Countries: Reply," American Economic Review, American Economic Association, vol. 87(5), pages 1040-1043, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongjun, Guan & Liye, Dong & Aiwu, Zhao, 2023. "Energy structure dividend, factor allocation efficiency and regional productivity growth-- An empirical examination of energy restructuring in China," Energy Policy, Elsevier, vol. 172(C).
    2. Lu, Lan & Yin, Shuiying & Wen, Fuying & Xu, Qingqing, 2023. "The spatial structure of labour force employment in China’s industries: Measurement and extraction," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 472-486.
    3. Zhang, Shangfeng & Zhu, Chun & Li, Xiujie & Yu, Xiuwen & Fang, Qi, 2022. "Sectoral heterogeneity, industrial structure transformation, and changes in total labor income share," Technological Forecasting and Social Change, Elsevier, vol. 176(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emrouznejad, Ali & Yang, Guo-liang, 2016. "CO2 emissions reduction of Chinese light manufacturing industries: A novel RAM-based global Malmquist–Luenberger productivity index," Energy Policy, Elsevier, vol. 96(C), pages 397-410.
    2. Barnabé Walheer, 2022. "Global Malmquist and cost Malmquist indexes for group comparison," Journal of Productivity Analysis, Springer, vol. 58(1), pages 75-93, August.
    3. Walheer, Barnabé, 2018. "Disaggregation of the cost Malmquist productivity index with joint and output-specific inputs," Omega, Elsevier, vol. 75(C), pages 1-12.
    4. Ke Wang & Yujiao Xian & Yi-Ming Wei & Zhimin Huang, 2016. "Sources of carbon productivity change: A decomposition and disaggregation analysis based on global Luenberger productivity indicator and endogenous directional distance function," CEEP-BIT Working Papers 91, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    5. Barnabé Walheer, 2018. "Cost Malmquist productivity index: an output-specific approach for group comparison," Journal of Productivity Analysis, Springer, vol. 49(1), pages 79-94, February.
    6. Wang, Ke & Wei, Yi-Ming & Huang, Zhimin, 2018. "Environmental efficiency and abatement efficiency measurements of China's thermal power industry: A data envelopment analysis based materials balance approach," European Journal of Operational Research, Elsevier, vol. 269(1), pages 35-50.
    7. Yao-yao Song & Xian-tong Ren & Guo-liang Yang, 2023. "Capacity utilization change over time," Journal of Productivity Analysis, Springer, vol. 59(1), pages 61-78, February.
    8. Shunsuke Managi & SJames J. Opaluch & Di Jin & Thomas A. Grigalunas, 2005. "Environmental Regulations and Technological Change in the Offshore Oil and Gas Industry," Land Economics, University of Wisconsin Press, vol. 81(2).
    9. Walheer, Barnabé, 2019. "Malmquist productivity index for multi-output producers: An application to electricity generation plants," Socio-Economic Planning Sciences, Elsevier, vol. 65(C), pages 76-88.
    10. Güner, Samet & Cebeci, Halil İbrahim & Antunes, Jorge Junio Moreira & Wanke, Peter F., 2021. "Sustainable efficiency drivers in Eurasian airports: Fuzzy NDEA approach based on Shannon's entropy," Journal of Air Transport Management, Elsevier, vol. 92(C).
    11. Mette Asmild & Tomas Baležentis & Jens Leth Hougaard, 2016. "Multi-directional productivity change: MEA-Malmquist," Journal of Productivity Analysis, Springer, vol. 46(2), pages 109-119, December.
    12. Adel Hatami-Marbini & Aliasghar Arabmaldar & John Otu Asu, 2022. "Robust productivity growth and efficiency measurement with undesirable outputs: evidence from the oil industry," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(4), pages 1213-1254, December.
    13. Ali Homayoni & Reza Fallahnejad & Farhad Hosseinzadeh Lotfi, 2022. "Cross Malmquist Productivity Index in Data Envelopment Analysis," 4OR, Springer, vol. 20(4), pages 567-602, December.
    14. Mohsen Afsharian & Heinz Ahn, 2015. "The overall Malmquist index: a new approach for measuring productivity changes over time," Annals of Operations Research, Springer, vol. 226(1), pages 1-27, March.
    15. Chaofan Chen & Qingxin Lan & Ming Gao & Yawen Sun, 2018. "Green Total Factor Productivity Growth and Its Determinants in China’s Industrial Economy," Sustainability, MDPI, vol. 10(4), pages 1-25, April.
    16. Bansal, Pooja & Kumar, Sunil & Mehra, Aparna & Gulati, Rachita, 2022. "Developing two dynamic Malmquist-Luenberger productivity indices: An illustrated application for assessing productivity performance of Indian banks," Omega, Elsevier, vol. 107(C).
    17. Qin, Quande & Li, Xin & Li, Li & Zhen, Wei & Wei, Yi-Ming, 2017. "Air emissions perspective on energy efficiency: An empirical analysis of China’s coastal areas," Applied Energy, Elsevier, vol. 185(P1), pages 604-614.
    18. Afsharian, Mohsen & Ahn, Heinz & Harms, Sören Guntram, 2019. "Performance comparison of management groups under centralised management," European Journal of Operational Research, Elsevier, vol. 278(3), pages 845-854.
    19. Emrouznejad, Ali & Yang, Guo-liang, 2016. "A framework for measuring global Malmquist–Luenberger productivity index with CO2 emissions on Chinese manufacturing industries," Energy, Elsevier, vol. 115(P1), pages 840-856.
    20. Reza Fallahnejad & Mohammad Reza Mozaffari & Peter Fernandes Wanke & Yong Tan, 2024. "Nash Bargaining Game Enhanced Global Malmquist Productivity Index for Cross-Productivity Index," Games, MDPI, vol. 15(1), pages 1-21, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:170:y:2021:i:c:s0040162521003607. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.