IDEAS home Printed from https://ideas.repec.org/a/eee/reveco/v24y2012icp8-25.html
   My bibliography  Save this article

Implementing option pricing models when asset returns follow an autoregressive moving average process

Author

Listed:
  • Wang, Chou-Wen
  • Wu, Chin-Wen
  • Tzang, Shyh-Weir

Abstract

Motivated by the empirical findings that asset returns or volatilities are predictable, this paper studies the pricing of European options on stock or volatility, the instantaneous changes of which depend upon an autoregressive moving average (ARMA) process. The pricing formula of an ARMA-type option is similar to that of Black and Scholes, except that the total volatility input depends upon the AR and MA parameters. From numerical analyses, the option values are increasing functions of the levels of AR or MA parameters across all moneyness levels. Specifically, the AR effect is more significant than the MA effect. Finally, based on the daily closing prices of TAIEX options from 2004 to 2008, the ad hoc ARMA(1,1) model provides the best in-sample fit and the second best out-of-sample fit, whereas the variance gamma model provides the second best in-sample fit and the best out-of-sample fit. Therefore, both variance gamma model and ad hoc ARMA model are superior models for pricing TAIEX options.

Suggested Citation

  • Wang, Chou-Wen & Wu, Chin-Wen & Tzang, Shyh-Weir, 2012. "Implementing option pricing models when asset returns follow an autoregressive moving average process," International Review of Economics & Finance, Elsevier, vol. 24(C), pages 8-25.
  • Handle: RePEc:eee:reveco:v:24:y:2012:i:c:p:8-25
    DOI: 10.1016/j.iref.2011.12.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1059056011001468
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.iref.2011.12.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dilip B. Madan & Peter P. Carr & Eric C. Chang, 1998. "The Variance Gamma Process and Option Pricing," Review of Finance, European Finance Association, vol. 2(1), pages 79-105.
    2. Lo, Andrew W & Wang, Jiang, 1995. "Implementing Option Pricing Models When Asset Returns Are Predictable," Journal of Finance, American Finance Association, vol. 50(1), pages 87-129, March.
    3. Athanassios N. Avramidis & Pierre L'Ecuyer, 2006. "Efficient Monte Carlo and Quasi-Monte Carlo Option Pricing Under the Variance Gamma Model," Management Science, INFORMS, vol. 52(12), pages 1930-1944, December.
    4. Bruce D. Grundy, "undated". "Option Prices and the Underlying Asset's Return Distribution (Reprint 012)," Rodney L. White Center for Financial Research Working Papers 11-91, Wharton School Rodney L. White Center for Financial Research.
    5. Roll, Richard, 1977. "An analytic valuation formula for unprotected American call options on stocks with known dividends," Journal of Financial Economics, Elsevier, vol. 5(2), pages 251-258, November.
    6. Ferland, Rene & Lalancette, Simon, 2006. "Dynamics of realized volatilities and correlations: An empirical study," Journal of Banking & Finance, Elsevier, vol. 30(7), pages 2109-2130, July.
    7. Grunbichler, Andreas & Longstaff, Francis A., 1996. "Valuing futures and options on volatility," Journal of Banking & Finance, Elsevier, vol. 20(6), pages 985-1001, July.
    8. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    9. Madan, Dilip B & Seneta, Eugene, 1990. "The Variance Gamma (V.G.) Model for Share Market Returns," The Journal of Business, University of Chicago Press, vol. 63(4), pages 511-524, October.
    10. Pong, Shiuyan & Shackleton, Mark B. & Taylor, Stephen J. & Xu, Xinzhong, 2004. "Forecasting currency volatility: A comparison of implied volatilities and AR(FI)MA models," Journal of Banking & Finance, Elsevier, vol. 28(10), pages 2541-2563, October.
    11. Harrison, J. Michael & Pliska, Stanley R., 1981. "Martingales and stochastic integrals in the theory of continuous trading," Stochastic Processes and their Applications, Elsevier, vol. 11(3), pages 215-260, August.
    12. Conrad, Jennifer & Kaul, Gautam, 1988. "Time-Variation in Expected Returns," The Journal of Business, University of Chicago Press, vol. 61(4), pages 409-425, October.
    13. De Bondt, Werner F M & Thaler, Richard, 1985. "Does the Stock Market Overreact?," Journal of Finance, American Finance Association, vol. 40(3), pages 793-805, July.
    14. French, Kenneth R. & Roll, Richard, 1986. "Stock return variances : The arrival of information and the reaction of traders," Journal of Financial Economics, Elsevier, vol. 17(1), pages 5-26, September.
    15. Bruce N. Lehmann, 1990. "Fads, Martingales, and Market Efficiency," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 105(1), pages 1-28.
    16. Jérôme Detemple & Carlton Osakwe, 2000. "The Valuation of Volatility Options," Review of Finance, European Finance Association, vol. 4(1), pages 21-50.
    17. Kittiakarasakun, Jullavut & Tse, Yiuman, 2011. "Modeling the fat tails in Asian stock markets," International Review of Economics & Finance, Elsevier, vol. 20(3), pages 430-440, June.
    18. Chopra, Navin & Lakonishok, Josef & Ritter, Jay R., 1992. "Measuring abnormal performance : Do stocks overreact?," Journal of Financial Economics, Elsevier, vol. 31(2), pages 235-268, April.
    19. Szu‐Lang Liao & Chao‐Chun Chen, 2006. "The valuation of European options when asset returns are autocorrelated," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 26(1), pages 85-102, January.
    20. A. Ronald Gallant & Chien-Te Hsu & George Tauchen, 1999. "Using Daily Range Data To Calibrate Volatility Diffusions And Extract The Forward Integrated Variance," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 617-631, November.
    21. J. Michael Harrison & Stanley R. Pliska, 1981. "Martingales and Stochastic Integrals in the Theory of Continous Trading," Discussion Papers 454, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    22. Dimitris Psychoyios & George Skiadopoulos, 2006. "Volatility options: Hedging effectiveness, pricing, and model error," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 26(1), pages 1-31, January.
    23. Jegadeesh, Narasimhan, 1990. "Evidence of Predictable Behavior of Security Returns," Journal of Finance, American Finance Association, vol. 45(3), pages 881-898, July.
    24. Heston, Steven L & Nandi, Saikat, 2000. "A Closed-Form GARCH Option Valuation Model," The Review of Financial Studies, Society for Financial Studies, vol. 13(3), pages 585-625.
    25. Grundy, R.D., 1991. "Option Prices and the Underlying Asset's Return Distribution," Weiss Center Working Papers 11-91, Wharton School - Weiss Center for International Financial Research.
    26. Sassan Alizadeh & Michael W. Brandt & Francis X. Diebold, 2002. "Range‐Based Estimation of Stochastic Volatility Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1047-1091, June.
    27. Bernard Dumas & Jeff Fleming & Robert E. Whaley, 1998. "Implied Volatility Functions: Empirical Tests," Journal of Finance, American Finance Association, vol. 53(6), pages 2059-2106, December.
    28. Jin‐Chuan Duan, 1995. "The Garch Option Pricing Model," Mathematical Finance, Wiley Blackwell, vol. 5(1), pages 13-32, January.
    29. Black, Fischer, 1976. "The pricing of commodity contracts," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 167-179.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Contreras, Javier & Rodríguez, Yeny E., 2014. "GARCH-based put option valuation to maximize benefit of wind investors," Applied Energy, Elsevier, vol. 136(C), pages 259-268.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    2. Huang, Hung-Hsi & Lin, Shin-Hung & Wang, Chiu-Ping, 2019. "Reasonable evaluation of VIX options for the Taiwan stock index," The North American Journal of Economics and Finance, Elsevier, vol. 48(C), pages 111-130.
    3. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    4. Lo, Andrew W & Wang, Jiang, 1995. "Implementing Option Pricing Models When Asset Returns Are Predictable," Journal of Finance, American Finance Association, vol. 50(1), pages 87-129, March.
    5. Lin, Yueh-Neng & Chang, Chien-Hung, 2010. "Consistent modeling of S&P 500 and VIX derivatives," Journal of Economic Dynamics and Control, Elsevier, vol. 34(11), pages 2302-2319, November.
    6. Caporin, Massimiliano & Ranaldo, Angelo & Santucci de Magistris, Paolo, 2013. "On the predictability of stock prices: A case for high and low prices," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 5132-5146.
    7. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    8. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    9. Steven L. Heston & Alberto G. Rossi, 2017. "A Spanning Series Approach to Options," The Review of Asset Pricing Studies, Society for Financial Studies, vol. 7(1), pages 2-42.
    10. David S. Bates, 1995. "Testing Option Pricing Models," NBER Working Papers 5129, National Bureau of Economic Research, Inc.
    11. Kim, In Joon & Kim, Sol, 2004. "Empirical comparison of alternative stochastic volatility option pricing models: Evidence from Korean KOSPI 200 index options market," Pacific-Basin Finance Journal, Elsevier, vol. 12(2), pages 117-142, April.
    12. Gencay, Ramazan, 1998. "The predictability of security returns with simple technical trading rules," Journal of Empirical Finance, Elsevier, vol. 5(4), pages 347-359, October.
    13. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    14. repec:oup:rapstu:v:7:y:2017:i:1:p:2-42. is not listed on IDEAS
    15. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    16. René Garcia & Eric Ghysels & Eric Renault, 2004. "The Econometrics of Option Pricing," CIRANO Working Papers 2004s-04, CIRANO.
    17. Chernov, Mikhail & Ghysels, Eric, 2000. "A study towards a unified approach to the joint estimation of objective and risk neutral measures for the purpose of options valuation," Journal of Financial Economics, Elsevier, vol. 56(3), pages 407-458, June.
    18. Nam, Kiseok & Pyun, Chong Soo & Kim, Sei-Wan, 2003. "Is asymmetric mean-reverting pattern in stock returns systematic? Evidence from Pacific-basin markets in the short-horizon," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 13(5), pages 481-502, December.
    19. Adam Zaremba & Jacob Koby Shemer, 2018. "Price-Based Investment Strategies," Springer Books, Springer, number 978-3-319-91530-2, September.
    20. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    21. Venter, Pierre J & Maré, Eben, 2022. "Price discovery in the volatility index option market: A univariate GARCH approach," Finance Research Letters, Elsevier, vol. 44(C).

    More about this item

    Keywords

    ARMA process; Option pricing; Martingale;
    All these keywords.

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reveco:v:24:y:2012:i:c:p:8-25. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620165 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.