IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v68y2017ip1p126-135.html
   My bibliography  Save this article

Building smart grid to power the next century in Taiwan

Author

Listed:
  • Lee, Amy H.I.
  • Chen, Hsing Hung
  • Chen, Jack

Abstract

Due to global climate concerns, many countries are developing energy policies to encourage low emissions and high efficiency. Taiwan's current practices should be modified for the emerging smart grid (SG) industry. Strategic policy and implementation plans that shift focus from original equipment manufacture (OEM) and original design manufacture (ODM) to a vertically integrated system involving suppliers and customers should be adopted to obtain success in the global markets. Government energy SG projects have been implemented over a short-term (2011–2015), medium-term (2016–2020) and long-term (2021–2030) to ensure steady supply, promote energy conservation, reduce carbon emission, increase green energy and facilitate a low carbon economy. Practical implementation of SG systems is the most effective way to reach these goals. In this paper, current smart grid statuses in some advanced countries are briefly reviewed. The implementation plans for smart grids in Taiwan are analyzed from the perspectives of strategic policy and cost-benefit. Then, gaps between supply and demand for new energy systems, opportunities for new industries, and suggestions for SG industries are discussed. Finally, recommendations for constructing an efficient and environmentally friendly SG in Taiwan for a low carbon society and sustainable development are provided.

Suggested Citation

  • Lee, Amy H.I. & Chen, Hsing Hung & Chen, Jack, 2017. "Building smart grid to power the next century in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 126-135.
  • Handle: RePEc:eee:rensus:v:68:y:2017:i:p1:p:126-135
    DOI: 10.1016/j.rser.2016.09.100
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116305950
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.09.100?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Noel, Lance & McCormack, Regina, 2014. "A cost benefit analysis of a V2G-capable electric school bus compared to a traditional diesel school bus," Applied Energy, Elsevier, vol. 126(C), pages 246-255.
    2. Pietrapertosa, F. & Cosmi, C. & Macchiato, M. & Salvia, M. & Cuomo, V., 2009. "Life Cycle Assessment, ExternE and Comprehensive Analysis for an integrated evaluation of the environmental impact of anthropogenic activities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1039-1048, June.
    3. Shih, Yi-Hsuan & Tseng, Chao-Heng, 2014. "Cost-benefit analysis of sustainable energy development using life-cycle co-benefits assessment and the system dynamics approach," Applied Energy, Elsevier, vol. 119(C), pages 57-66.
    4. Horowitz, John & Lange, Andreas, 2014. "Cost–benefit analysis under uncertainty — A note on Weitzman's dismal theorem," Energy Economics, Elsevier, vol. 42(C), pages 201-203.
    5. Allen, Thomas J. & Utterback, James M. & Sirbu, Marvin A. & Ashford, Nicholas A. & Hollomon, J. Herbert, 1978. "Government influence on the process of innovation in Europe and Japan," Research Policy, Elsevier, vol. 7(2), pages 124-149, April.
    6. Reichelstein, Stefan & Sahoo, Anshuman, 2015. "Time of day pricing and the levelized cost of intermittent power generation," Energy Economics, Elsevier, vol. 48(C), pages 97-108.
    7. Dietz, Simon & Hepburn, Cameron, 2013. "Benefit–cost analysis of non-marginal climate and energy projects," Energy Economics, Elsevier, vol. 40(C), pages 61-71.
    8. Das, Trishna & Krishnan, Venkat & McCalley, James D., 2015. "Assessing the benefits and economics of bulk energy storage technologies in the power grid," Applied Energy, Elsevier, vol. 139(C), pages 104-118.
    9. Haydt, Gustavo & Leal, Vítor & Dias, Luís, 2014. "A multi-objective approach for developing national energy efficiency plans," Energy Policy, Elsevier, vol. 67(C), pages 16-27.
    10. Kowalski, Katharina & Stagl, Sigrid & Madlener, Reinhard & Omann, Ines, 2009. "Sustainable energy futures: Methodological challenges in combining scenarios and participatory multi-criteria analysis," European Journal of Operational Research, Elsevier, vol. 197(3), pages 1063-1074, September.
    11. Burns, John Edward & Kang, Jin-Su, 2012. "Comparative economic analysis of supporting policies for residential solar PV in the United States: Solar Renewable Energy Credit (SREC) potential," Energy Policy, Elsevier, vol. 44(C), pages 217-225.
    12. Lund, Henrik & Andersen, Anders N. & Østergaard, Poul Alberg & Mathiesen, Brian Vad & Connolly, David, 2012. "From electricity smart grids to smart energy systems – A market operation based approach and understanding," Energy, Elsevier, vol. 42(1), pages 96-102.
    13. Le Dars, Aude & Loaec, Christine, 2007. "Economic comparison of long-term nuclear fuel cycle management scenarios: The influence of the discount rate," Energy Policy, Elsevier, vol. 35(5), pages 2995-3002, May.
    14. Martin L. Weitzman, 2009. "On Modeling and Interpreting the Economics of Catastrophic Climate Change," The Review of Economics and Statistics, MIT Press, vol. 91(1), pages 1-19, February.
    15. Laird, Frank N. & Stefes, Christoph, 2009. "The diverging paths of German and United States policies for renewable energy: Sources of difference," Energy Policy, Elsevier, vol. 37(7), pages 2619-2629, July.
    16. Lin, Chen-Chun & Yang, Chia-Han & Shyua, Joseph Z., 2013. "A comparison of innovation policy in the smart grid industry across the pacific: China and the USA," Energy Policy, Elsevier, vol. 57(C), pages 119-132.
    17. Fadaeenejad, M. & Saberian, A.M. & Fadaee, Mohd. & Radzi, M.A.M. & Hizam, H. & AbKadir, M.Z.A., 2014. "The present and future of smart power grid in developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 828-834.
    18. Magro, Edurne & Wilson, James R., 2013. "Complex innovation policy systems: Towards an evaluation mix," Research Policy, Elsevier, vol. 42(9), pages 1647-1656.
    19. Simona O. Negro & Marko P. Hekkert, 2008. "Explaining the success of emerging technologies by innovation system functioning: the case of biomass digestion in Germany," Innovation Studies Utrecht (ISU) working paper series 08-08, Utrecht University, Department of Innovation Studies, revised Feb 2008.
    20. Bradley, Peter & Leach, Matthew & Torriti, Jacopo, 2013. "A review of the costs and benefits of demand response for electricity in the UK," Energy Policy, Elsevier, vol. 52(C), pages 312-327.
    21. Raven, R.P.J.M. & Mourik, R.M. & Feenstra, C.F.J. & Heiskanen, E., 2009. "Modulating societal acceptance in new energy projects: Towards a toolkit methodology for project managers," Energy, Elsevier, vol. 34(5), pages 564-574.
    22. -, 2009. "The economics of climate change," Sede Subregional de la CEPAL para el Caribe (Estudios e Investigaciones) 38679, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    23. Wade, N.S. & Taylor, P.C. & Lang, P.D. & Jones, P.R., 2010. "Evaluating the benefits of an electrical energy storage system in a future smart grid," Energy Policy, Elsevier, vol. 38(11), pages 7180-7188, November.
    24. Kissel, Johannes M. & Krauter, Stefan C.W., 2006. "Adaptations of renewable energy policies to unstable macroeconomic situations--Case study: Wind power in Brazil," Energy Policy, Elsevier, vol. 34(18), pages 3591-3598, December.
    25. O’Mahoney, Amy & Thorne, Fiona & Denny, Eleanor, 2013. "A cost-benefit analysis of generating electricity from biomass," Energy Policy, Elsevier, vol. 57(C), pages 347-354.
    26. Chae, Yeora & Park, Jeongim, 2011. "Quantifying costs and benefits of integrated environmental strategies of air quality management and greenhouse gas reduction in the Seoul Metropolitan Area," Energy Policy, Elsevier, vol. 39(9), pages 5296-5308, September.
    27. Miara, Ariel & Tarr, Craig & Spellman, Rachel & Vörösmarty, Charles J. & Macknick, Jordan E., 2014. "The power of efficiency: Optimizing environmental and social benefits through demand-side-management," Energy, Elsevier, vol. 76(C), pages 502-512.
    28. Wissner, Matthias, 2011. "The Smart Grid - A saucerful of secrets?," Applied Energy, Elsevier, vol. 88(7), pages 2509-2518, July.
    29. Xia, X.H. & Huang, G.T. & Chen, G.Q. & Zhang, Bo & Chen, Z.M. & Yang, Q., 2011. "Energy security, efficiency and carbon emission of Chinese industry," Energy Policy, Elsevier, vol. 39(6), pages 3520-3528, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tohid Harighi & Ramazan Bayindir & Sanjeevikumar Padmanaban & Lucian Mihet-Popa & Eklas Hossain, 2018. "An Overview of Energy Scenarios, Storage Systems and the Infrastructure for Vehicle-to-Grid Technology," Energies, MDPI, vol. 11(8), pages 1-18, August.
    2. Lamnatou, Chr. & Chemisana, D. & Cristofari, C., 2022. "Smart grids and smart technologies in relation to photovoltaics, storage systems, buildings and the environment," Renewable Energy, Elsevier, vol. 185(C), pages 1376-1391.
    3. Erica Ocampo & Yen-Chih Huang & Cheng-Chien Kuo, 2020. "Feasible Reserve in Day-Ahead Unit Commitment Using Scenario-Based Optimization," Energies, MDPI, vol. 13(20), pages 1-17, October.
    4. Weiwei Liu & Yuan Tao & Zhile Yang & Kexin Bi, 2019. "Exploring and Visualizing the Patent Collaboration Network: A Case Study of Smart Grid Field in China," Sustainability, MDPI, vol. 11(2), pages 1-18, January.
    5. Mirzabeiki, Vahid & Saghiri, Soroosh Sam, 2020. "From ambition to action: How to achieve integration in omni-channel?," Journal of Business Research, Elsevier, vol. 110(C), pages 1-11.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Chen-Chun & Yang, Chia-Han & Shyua, Joseph Z., 2013. "A comparison of innovation policy in the smart grid industry across the pacific: China and the USA," Energy Policy, Elsevier, vol. 57(C), pages 119-132.
    2. Kuan Chung Lin & Joseph Z. Shyu & Kun Ding, 2017. "A Cross-Strait Comparison of Innovation Policy under Industry 4.0 and Sustainability Development Transition," Sustainability, MDPI, vol. 9(5), pages 1-17, May.
    3. Billette de Villemeur, Etienne & Leroux, Justin, 2016. "Plaidoyer pour une autre approche des politiques climatiques : De la poursuite de l’intérêt propre à l’introduction du principe de responsabilité [For another approach to climate policy: From the p," MPRA Paper 74998, University Library of Munich, Germany.
    4. Foley, Duncan K. & Rezai, Armon & Taylor, Lance, 2013. "The social cost of carbon emissions: Seven propositions," Economics Letters, Elsevier, vol. 121(1), pages 90-97.
    5. Hwang, In Chang & Tol, Richard S.J. & Hofkes, Marjan W., 2016. "Fat-tailed risk about climate change and climate policy," Energy Policy, Elsevier, vol. 89(C), pages 25-35.
    6. Colak, Ilhami & Kabalci, Ersan & Fulli, Gianluca & Lazarou, Stavros, 2015. "A survey on the contributions of power electronics to smart grid systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 562-579.
    7. McGrath, Luke & Hynes, Stephen & McHale, John, 2019. "Augmenting the World Bank's estimates: Ireland's genuine savings through boom and bust," Ecological Economics, Elsevier, vol. 165(C), pages 1-1.
    8. Shaukat, N. & Khan, B. & Ali, S.M. & Mehmood, C.A. & Khan, J. & Farid, U. & Majid, M. & Anwar, S.M. & Jawad, M. & Ullah, Z., 2018. "A survey on electric vehicle transportation within smart grid system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1329-1349.
    9. In Chang Hwang & Richard S. J. Tol & Marjan W. Hofkes, 2019. "Active Learning and Optimal Climate Policy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(4), pages 1237-1264, August.
    10. Kine Josefine Aurland-Bredesen, 2020. "The Benefit-Cost Ratio as a Decision Criteria When Managing Catastrophes," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 77(2), pages 345-363, October.
    11. Hwang, In Chang, 2014. "Fat-tailed uncertainty and the learning-effect," MPRA Paper 53671, University Library of Munich, Germany.
    12. J. Farmer & Cameron Hepburn & Penny Mealy & Alexander Teytelboym, 2015. "A Third Wave in the Economics of Climate Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(2), pages 329-357, October.
    13. Andrea Rampa, 2020. "Climate change, catastrophes and Dismal Theorem: a critical review [Klimawandel, Katastrophen und das „Dismal Theorem“: eine kritische Überprüfung]," Review of Regional Research: Jahrbuch für Regionalwissenschaft, Springer;Gesellschaft für Regionalforschung (GfR), vol. 40(2), pages 113-136, October.
    14. In Chang Hwang, 2016. "Active learning and optimal climate policy," EcoMod2016 9611, EcoMod.
    15. Christoph M. Rheinberger & Nicolas Treich, 2017. "Attitudes Toward Catastrophe," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(3), pages 609-636, July.
    16. van den Bergh, J.C.J.M. & Botzen, W.J.W., 2015. "Monetary valuation of the social cost of CO2 emissions: A critical survey," Ecological Economics, Elsevier, vol. 114(C), pages 33-46.
    17. Richard S. J. Tol & In Chang Hwang & Frédéric Reynès, 2012. "The Effect of Learning on Climate Policy under Fat-tailed Uncertainty," Working Paper Series 5312, Department of Economics, University of Sussex Business School.
    18. Simon Levin & Anastasios Xepapadeas, 2021. "On the Coevolution of Economic and Ecological Systems," Annual Review of Resource Economics, Annual Reviews, vol. 13(1), pages 355-377, October.
    19. Hahn Robert, 2010. "Designing Smarter Regulation with Improved Benefit-Cost Analysis," Journal of Benefit-Cost Analysis, De Gruyter, vol. 1(1), pages 1-19, July.
    20. Bommier, Antoine & Lanz, Bruno & Zuber, Stéphane, 2015. "Models-as-usual for unusual risks? On the value of catastrophic climate change," Journal of Environmental Economics and Management, Elsevier, vol. 74(C), pages 1-22.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:68:y:2017:i:p1:p:126-135. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.