IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v35y2010i1p23-28.html
   My bibliography  Save this article

Indirect energy input of agricultural machinery in bioenergy production

Author

Listed:
  • Mikkola, Hannu J.
  • Ahokas, Jukka

Abstract

Sustainability of bioenergy products should be evaluated by means of an energy analysis that takes into account all relevant direct and indirect energy inputs. Direct energy input is viewed as the major energy consuming factor, and is quite easy to measure. Indirect energy input, however, has received relatively scant attention, so it is likely to be insufficiently analysed and possibly underestimated. This paper reviews the data available and suggests the type of research that would be needed to get a better understanding of the indirect energy input. The analysis addresses questions about the use of energy to produce and maintain agricultural machinery, the allocation of energy to different bioenergy products, and the real use and lifetime of machinery.

Suggested Citation

  • Mikkola, Hannu J. & Ahokas, Jukka, 2010. "Indirect energy input of agricultural machinery in bioenergy production," Renewable Energy, Elsevier, vol. 35(1), pages 23-28.
  • Handle: RePEc:eee:renene:v:35:y:2010:i:1:p:23-28
    DOI: 10.1016/j.renene.2009.05.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148109002316
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2009.05.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Foster, Phillips & Flemming, John & Wichelns, Dennis, 1980. "Energy Accounting: The Case of Farm Machinery in Maryland," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 12(1), pages 189-192, July.
    2. Foster, Phillips W. & Flemming, John & Wichelns, Dennis, 1980. "Energy Accounting: The Case Of Farm Machinery In Maryland," Southern Journal of Agricultural Economics, Southern Agricultural Economics Association, vol. 12(1), pages 1-4, July.
    3. Bullard, Clark W. & Penner, Peter S. & Pilati, David A., 1978. "Net energy analysis : Handbook for combining process and input-output analysis," Resources and Energy, Elsevier, vol. 1(3), pages 267-313, November.
    4. Farla, Jacco C. M. & Blok, Kornelis, 2001. "The quality of energy intensity indicators for international comparison in the iron and steel industry," Energy Policy, Elsevier, vol. 29(7), pages 523-543, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yongyou Nie & Yunhuan Gao & He He, 2022. "Modelling Structural Effect and Linkage on Carbon Emissions in China: An Environmentally Extended Semi-Closed Ghosh Input–Output Model," Energies, MDPI, vol. 15(17), pages 1-17, August.
    2. Mantoam, Edemilson José & Romanelli, Thiago Libório & Milan, Marcos, 2015. "Material and energy demand in actual and suggested maintenance of sugarcane harvesters," International Journal of Agricultural Management, Institute of Agricultural Management, vol. 4(2), January.
    3. Zhang, Wei & Zhang, Ting & Li, Hangyu & Zhang, Han, 2022. "Dynamic spillover capacity of R&D and digital investments in China's manufacturing industry under long-term technological progress based on the industry chain perspective," Technology in Society, Elsevier, vol. 71(C).
    4. Nordborg, Maria & Berndes, Göran & Dimitriou, Ioannis & Henriksson, Annika & Mola-Yudego, Blas & Rosenqvist, Håkan, 2018. "Energy analysis of willow production for bioenergy in Sweden," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 473-482.
    5. Rita Bužinskienė & Astrida Miceikienė, 2022. "Cost–Benefit Analysis for Supply Chain of Renewable Gases from Perennial Energy Crops: The Case of Lithuania," Sustainability, MDPI, vol. 14(17), pages 1-16, September.
    6. Manzone, Marco & Calvo, Angela, 2017. "Woodchip transportation: Climatic and congestion influence on productivity, energy and CO2 emission of agricultural and industrial convoys," Renewable Energy, Elsevier, vol. 108(C), pages 250-259.
    7. Muhammad Achirul Nanda & Wahyu Sugandi & Arif Kurnia Wijayanto & Harry Imantho & Arya Sutawijaya & Leopold Oscar Nelwan & I Wayan Budiastra & Kudang Boro Seminar, 2023. "The Waste-to-Energy (WtE) Technology to Support Alternative Fuels for Agriculture in the Context of Effective Solid Waste Management in the Jabodetabek Area, Indonesia," Energies, MDPI, vol. 16(24), pages 1-20, December.
    8. Alluvione, Francesco & Moretti, Barbara & Sacco, Dario & Grignani, Carlo, 2011. "EUE (energy use efficiency) of cropping systems for a sustainable agriculture," Energy, Elsevier, vol. 36(7), pages 4468-4481.
    9. Mohammadi, Ali & Rafiee, Shahin & Mohtasebi, Seyed Saeid & Mousavi Avval, Seyed Hashem & Rafiee, Hamed, 2011. "Energy efficiency improvement and input cost saving in kiwifruit production using Data Envelopment Analysis approach," Renewable Energy, Elsevier, vol. 36(9), pages 2573-2579.
    10. Matteo Vittuari & Fabio De Menna & Marco Pagani, 2016. "The Hidden Burden of Food Waste: The Double Energy Waste in Italy," Energies, MDPI, vol. 9(8), pages 1-24, August.
    11. Manzone, Marco & Calvo, Angela, 2016. "Energy and CO2 analysis of poplar and maize crops for biomass production in north Italy," Renewable Energy, Elsevier, vol. 86(C), pages 675-681.
    12. Manzone, Marco, 2015. "Energy consumption and CO2 analysis of different types of chippers used in wood biomass plantations," Applied Energy, Elsevier, vol. 156(C), pages 686-692.
    13. Martinho, V.J.P.D., 2020. "Relationships between agricultural energy and farming indicators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bradford, Garnett L., 1981. "Comment: Energy Accounting: The Case Of Farm Machinery In Maryland," Southern Journal of Agricultural Economics, Southern Agricultural Economics Association, vol. 13(1), pages 1-3, July.
    2. Apriani Soepardi & Pratikto Pratikto & Purnomo Budi Santoso & Ishardita Pambudi Tama & Patrik Thollander, 2018. "Linking of Barriers to Energy Efficiency Improvement in Indonesia’s Steel Industry," Energies, MDPI, vol. 11(1), pages 1-22, January.
    3. Li, Yilin & Chen, Bin & Li, Chaohui & Li, Zhi & Chen, Guoqian, 2020. "Energy perspective of Sino-US trade imbalance in global supply chains," Energy Economics, Elsevier, vol. 92(C).
    4. Wu, X.D. & Guo, J.L. & Chen, G.Q., 2018. "The striking amount of carbon emissions by the construction stage of coal-fired power generation system in China," Energy Policy, Elsevier, vol. 117(C), pages 358-369.
    5. Stern, David I., 1997. "Limits to substitution and irreversibility in production and consumption: A neoclassical interpretation of ecological economics," Ecological Economics, Elsevier, vol. 21(3), pages 197-215, June.
    6. Suh, Sangwon, 2004. "Functions, commodities and environmental impacts in an ecological-economic model," Ecological Economics, Elsevier, vol. 48(4), pages 451-467, April.
    7. Lixiao Zhang & Qiuhong Hu & Fan Zhang, 2014. "Input-Output Modeling for Urban Energy Consumption in Beijing: Dynamics and Comparison," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-11, March.
    8. Jin, Taeyoung, 2022. "Impact of heat and electricity consumption on energy intensity: A panel data analysis," Energy, Elsevier, vol. 239(PA).
    9. Gemechu, E.D. & Butnar, I. & Llop, M. & Castells, F., 2012. "Environmental tax on products and services based on their carbon footprint: A case study of the pulp and paper sector," Energy Policy, Elsevier, vol. 50(C), pages 336-344.
    10. Lina I. Brand-Correa & Paul E. Brockway & Claire L. Copeland & Timothy J. Foxon & Anne Owen & Peter G. Taylor, 2017. "Developing an Input-Output Based Method to Estimate a National-Level Energy Return on Investment (EROI)," Energies, MDPI, vol. 10(4), pages 1-21, April.
    11. Yiqi Zhang & Yuan Chang & Changbo Wang & Jimmy C. H. Fung & Alexis K. H. Lau, 2022. "Life‐cycle energy and environmental emissions of cargo ships," Journal of Industrial Ecology, Yale University, vol. 26(6), pages 2057-2068, December.
    12. Cholapat Jongdeepaisal & Seigo Nasu, 2018. "Economic Impact Evaluation of a Biomass Power Plant Using a Technical Coefficient Pre-Adjustment in Hybrid Input-Output Analysis," Energies, MDPI, vol. 11(3), pages 1-11, March.
    13. Wu, X.D. & Chen, G.Q., 2017. "Energy and water nexus in power generation: The surprisingly high amount of industrial water use induced by solar power infrastructure in China," Applied Energy, Elsevier, vol. 195(C), pages 125-136.
    14. Wu, X.D. & Ji, Xi & Li, Chaohui & Xia, X.H. & Chen, G.Q., 2019. "Water footprint of thermal power in China: Implications from the high amount of industrial water use by plant infrastructure of coal-fired generation system," Energy Policy, Elsevier, vol. 132(C), pages 452-461.
    15. Price, L & Sinton, J & Worrell, E & Phylipsen, D & Xiulian, H & Ji, L, 2002. "Energy use and carbon dioxide emissions from steel production in China," Energy, Elsevier, vol. 27(5), pages 429-446.
    16. Macías, Arturo & Matilla-García, Mariano, 2015. "Net energy analysis in a Ramsey–Hotelling growth model," Energy Policy, Elsevier, vol. 86(C), pages 562-573.
    17. Kimberly Bawden & Eric Williams, 2015. "Hybrid Life Cycle Assessment of Low, Mid and High-Rise Multi-Family Dwellings," Challenges, MDPI, vol. 6(1), pages 1-19, April.
    18. Alexandre Poisson & Charles A. S. Hall, 2013. "Time Series EROI for Canadian Oil and Gas," Energies, MDPI, vol. 6(11), pages 1-20, November.
    19. Arens, Marlene & Worrell, Ernst & Schleich, Joachim, 2012. "Energy intensity development of the German iron and steel industry between 1991 and 2007," Energy, Elsevier, vol. 45(1), pages 786-797.
    20. Heun, Matthew Kuperus & Owen, Anne & Brockway, Paul E., 2018. "A physical supply-use table framework for energy analysis on the energy conversion chain," Applied Energy, Elsevier, vol. 226(C), pages 1134-1162.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:35:y:2010:i:1:p:23-28. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.