IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i3p598-d135353.html
   My bibliography  Save this article

Economic Impact Evaluation of a Biomass Power Plant Using a Technical Coefficient Pre-Adjustment in Hybrid Input-Output Analysis

Author

Listed:
  • Cholapat Jongdeepaisal

    (School of Economics and Management, Kochi University of Technology, 2-22 Eikokuji, Kochi City, Kochi 782-8502, Japan)

  • Seigo Nasu

    (School of Economics and Management, Kochi University of Technology, 2-22 Eikokuji, Kochi City, Kochi 782-8502, Japan)

Abstract

This paper presents a new and improved method of hybrid input-output (I-O) to evaluate the economic impact of a biomass power plant’s resource production and consumption. The effect of resource consumption induces a change in an economy’s production structure and alters the technical coefficient of the hybrid I-O table, which should not be changed. Our study examines this problem based on two cases: a small cut-off ratio from the existing industry, in which the change in the technical coefficient can be ignored, and a large cut-off ratio from the existing industry, in which the technical coefficient is amended using the pre-adjustment method. Consequently, the biomass power plant using the large cut-off ratio from the existing industry case contributes about 1114 million yen to the local economy. A comparison of these two cases shows that the error caused by ignorance of the technical coefficient adjustment could result in 291.78 million yen less in total economic production, which is about 36% of the total additional production using the small cut-off ratio from the existing industry case. The losses in total economic production clearly increase in economic sectors that are related to the resource consumption of the biomass power plant.

Suggested Citation

  • Cholapat Jongdeepaisal & Seigo Nasu, 2018. "Economic Impact Evaluation of a Biomass Power Plant Using a Technical Coefficient Pre-Adjustment in Hybrid Input-Output Analysis," Energies, MDPI, vol. 11(3), pages 1-11, March.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:3:p:598-:d:135353
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/3/598/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/3/598/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Suh, Sangwon, 2006. "Reply: Downstream cut-offs in integrated hybrid life-cycle assessment," Ecological Economics, Elsevier, vol. 59(1), pages 7-12, August.
    2. Cui, Lian-Biao & Peng, Pan & Zhu, Lei, 2015. "Embodied energy, export policy adjustment and China's sustainable development: A multi-regional input-output analysis," Energy, Elsevier, vol. 82(C), pages 457-467.
    3. Satish Joshi, 1999. "Product Environmental Life‐Cycle Assessment Using Input‐Output Techniques," Journal of Industrial Ecology, Yale University, vol. 3(2‐3), pages 95-120, April.
    4. Peters, Glen P. & Hertwich, Edgar G., 2006. "A comment on "Functions, commodities and environmental impacts in an ecological-economic model"," Ecological Economics, Elsevier, vol. 59(1), pages 1-6, August.
    5. Hussain Ali Bekhet & Tahira Yasmin, 2014. "Assessment of the global financial crisis effects on energy consumption and economic growth in Malaysia: An input–output analysis," International Economics, CEPII research center, issue 140, pages 49-70.
    6. Suh, Sangwon, 2004. "Functions, commodities and environmental impacts in an ecological-economic model," Ecological Economics, Elsevier, vol. 48(4), pages 451-467, April.
    7. Bullard, Clark W. & Penner, Peter S. & Pilati, David A., 1978. "Net energy analysis : Handbook for combining process and input-output analysis," Resources and Energy, Elsevier, vol. 1(3), pages 267-313, November.
    8. Zhang, Wencheng & Peng, Shuijun & Sun, Chuanwang, 2015. "CO2 emissions in the global supply chains of services: An analysis based on a multi-regional input–output model," Energy Policy, Elsevier, vol. 86(C), pages 93-103.
    9. Nagashima, Shin & Uchiyama, Yohji & Okajima, Keiichi, 2017. "Hybrid input–output table method for socioeconomic and environmental assessment of a wind power generation system," Applied Energy, Elsevier, vol. 185(P2), pages 1067-1075.
    10. Casler, Stephen & Wilbur, Suzanne, 1984. "Energy input-output analysis : A simple guide," Resources and Energy, Elsevier, vol. 6(2), pages 187-201, June.
    11. Liu, Qiaoling & Wang, Qi, 2015. "Reexamine SO2 emissions embodied in China's exports using multiregional input–output analysis," Ecological Economics, Elsevier, vol. 113(C), pages 39-50.
    12. Chen, Shaoqing & Chen, Bin, 2015. "Urban energy consumption: Different insights from energy flow analysis, input–output analysis and ecological network analysis," Applied Energy, Elsevier, vol. 138(C), pages 99-107.
    13. Garrett-Peltier, Heidi, 2017. "Green versus brown: Comparing the employment impacts of energy efficiency, renewable energy, and fossil fuels using an input-output model," Economic Modelling, Elsevier, vol. 61(C), pages 439-447.
    14. Cortés-Borda, D. & Guillén-Gosálbez, G. & Jiménez, L., 2015. "Solar energy embodied in international trade of goods and services: A multi-regional input–output approach," Energy, Elsevier, vol. 82(C), pages 578-588.
    15. Carvalho, Ariovaldo Lopes de & Antunes, Carlos Henggeler & Freire, Fausto & Henriques, Carla Oliveira, 2015. "A hybrid input–output multi-objective model to assess economic–energy–environment trade-offs in Brazil," Energy, Elsevier, vol. 82(C), pages 769-785.
    16. repec:cii:cepiie:2014-q4-140-40 is not listed on IDEAS
    17. Leontief, Wassily, 1970. "Environmental Repercussions and the Economic Structure: An Input-Output Approach," The Review of Economics and Statistics, MIT Press, vol. 52(3), pages 262-271, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Woo, Heesung & Moroni, Martin & Park, Joowon & Taskhiri, Mohammad Sadegh & Turner, Paul, 2020. "Residues and bio-energy generation: A case study modelling value chain optimisation in Tasmania," Energy, Elsevier, vol. 196(C).
    2. Mario Martín-Gamboa & Paula Quinteiro & Ana Cláudia Dias & Diego Iribarren, 2021. "Comparative Social Life Cycle Assessment of Two Biomass-to-Electricity Systems," IJERPH, MDPI, vol. 18(9), pages 1-15, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xueting Zhao, 2015. "LCA Methodologies an Annotated Bibliography," Working Papers Resource Document 2015-03, Regional Research Institute, West Virginia University.
    2. Man Yu & Thomas Wiedmann, 2018. "Implementing hybrid LCA routines in an input–output virtual laboratory," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 7(1), pages 1-24, December.
    3. Maxime Agez & Guillaume Majeau‐Bettez & Manuele Margni & Anders H. Strømman & Réjean Samson, 2020. "Lifting the veil on the correction of double counting incidents in hybrid life cycle assessment," Journal of Industrial Ecology, Yale University, vol. 24(3), pages 517-533, June.
    4. Sun, Xudong & Li, Jiashuo & Qiao, Han & Zhang, Bo, 2017. "Energy implications of China's regional development: New insights from multi-regional input-output analysis," Applied Energy, Elsevier, vol. 196(C), pages 118-131.
    5. Xin, Li & Feng, Kuishuang & Siu, Yim Ling & Hubacek, Klaus, 2015. "Challenges faced when energy meets water: CO2 and water implications of power generation in inner Mongolia of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 419-430.
    6. Soo Huey Teh & Thomas Wiedmann, 2018. "Decomposition of integrated hybrid life cycle inventories by origin and final-stage inputs," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 7(1), pages 1-15, December.
    7. Jesper Munksgaard & Manfred Lenzen & Thomas C. Jensen & Lise-Lotte Pade, 2005. "Transport Energy Embodied in Consumer Goods: A Hybrid Life-Cycle Analysis," Energy & Environment, , vol. 16(2), pages 283-301, March.
    8. de Carvalho, Ariovaldo Lopes & Antunes, Carlos Henggeler & Freire, Fausto, 2016. "Economic-energy-environment analysis of prospective sugarcane bioethanol production in Brazil," Applied Energy, Elsevier, vol. 181(C), pages 514-526.
    9. José A. Camacho & Lucas Silva Almeida & Mercedes Rodríguez & Jesús Molina, 2022. "Domestic versus foreign energy use: an analysis for four European countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 4602-4622, April.
    10. Soares, N. & Martins, A.G. & Carvalho, A.L. & Caldeira, C. & Du, C. & Castanheira, É. & Rodrigues, E. & Oliveira, G. & Pereira, G.I. & Bastos, J. & Ferreira, J.P. & Ribeiro, L.A. & Figueiredo, N.C. & , 2018. "The challenging paradigm of interrelated energy systems towards a more sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 171-193.
    11. Chen, Weidong & Wu, Fangyong & Geng, Wenxin & Yu, Guanyi, 2017. "Carbon emissions in China’s industrial sectors," Resources, Conservation & Recycling, Elsevier, vol. 117(PB), pages 264-273.
    12. Manfred Lenzen, 2001. "A Generalized Input-Output Multiplier Calculus for Australia," Economic Systems Research, Taylor & Francis Journals, vol. 13(1), pages 65-92.
    13. King, Carey W., 2014. "Matrix method for comparing system and individual energy return ratios when considering an energy transition," Energy, Elsevier, vol. 72(C), pages 254-265.
    14. Soo Huey Teh & Thomas Wiedmann & Stephen Moore, 2018. "Mixed-unit hybrid life cycle assessment applied to the recycling of construction materials," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 7(1), pages 1-25, December.
    15. Taelim Choi & Randall W. Jackson & Nancey Green Leigh & Christa D. Jensen, 2011. "A Baseline Input—Output Model with Environmental Accounts (IOEA) Applied to E-Waste Recycling," International Regional Science Review, , vol. 34(1), pages 3-33, January.
    16. Li, Yilin & Chen, Bin & Li, Chaohui & Li, Zhi & Chen, Guoqian, 2020. "Energy perspective of Sino-US trade imbalance in global supply chains," Energy Economics, Elsevier, vol. 92(C).
    17. Stern, David I., 1997. "Limits to substitution and irreversibility in production and consumption: A neoclassical interpretation of ecological economics," Ecological Economics, Elsevier, vol. 21(3), pages 197-215, June.
    18. Suh, Sangwon, 2004. "Functions, commodities and environmental impacts in an ecological-economic model," Ecological Economics, Elsevier, vol. 48(4), pages 451-467, April.
    19. Lixiao Zhang & Qiuhong Hu & Fan Zhang, 2014. "Input-Output Modeling for Urban Energy Consumption in Beijing: Dynamics and Comparison," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-11, March.
    20. Roca, Jordi & Serrano, Monica, 2007. "Income growth and atmospheric pollution in Spain: An input-output approach," Ecological Economics, Elsevier, vol. 63(1), pages 230-242, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:3:p:598-:d:135353. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.