IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v36y2011i7p4468-4481.html
   My bibliography  Save this article

EUE (energy use efficiency) of cropping systems for a sustainable agriculture

Author

Listed:
  • Alluvione, Francesco
  • Moretti, Barbara
  • Sacco, Dario
  • Grignani, Carlo

Abstract

Energy efficiency of agriculture needs improvement to reduce the dependency on non-renewable energy sources. We estimated the energy flows of a wheat–maize–soybean–maize rotation of three different cropping systems: (i) low-input integrated farming (LI), (ii) integrated farming following European Regulations (IFS), and (iii) conventional farming (CONV). Balancing N fertilization with actual crop requirements and adopting minimum tillage proved the most efficient techniques to reduce energy inputs, contributing 64.7% and 11.2% respectively to the total reduction. Large differences among crops in energy efficiency (maize: 2.2 MJ kg−1 grain; wheat: 2.6 MJ kg−1 grain; soybean: 4.1 MJ kg−1 grain) suggest that crop rotation and crop management can be equally important in determining cropping system energy efficiency. Integrated farming techniques improved energy efficiency by reducing energy inputs without affecting energy outputs. Compared with CONV, energy use efficiency increased 31.4% and 32.7% in IFS and LI, respectively, while obtaining similar net energy values. Including SOM evolution in the energy analysis greatly enhanced the energy performance of IFS and, even more dramatically, LI compared to CONV. Improved energy efficiency suggests the adoption of alternative farming systems to reduce greenhouse gas emissions from agriculture. However, a thorough evaluation should include net global warming potential assessment.

Suggested Citation

  • Alluvione, Francesco & Moretti, Barbara & Sacco, Dario & Grignani, Carlo, 2011. "EUE (energy use efficiency) of cropping systems for a sustainable agriculture," Energy, Elsevier, vol. 36(7), pages 4468-4481.
  • Handle: RePEc:eee:energy:v:36:y:2011:i:7:p:4468-4481
    DOI: 10.1016/j.energy.2011.03.075
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421100243X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2011.03.075?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Singh, H. & Singh, A.K. & Kushwaha, H.L. & Singh, Amit, 2007. "Energy consumption pattern of wheat production in India," Energy, Elsevier, vol. 32(10), pages 1848-1854.
    2. Jones, M. R., 1989. "Analysis of the use of energy in agriculture--Approaches and problems," Agricultural Systems, Elsevier, vol. 29(4), pages 339-355.
    3. Mikkola, Hannu J. & Ahokas, Jukka, 2010. "Indirect energy input of agricultural machinery in bioenergy production," Renewable Energy, Elsevier, vol. 35(1), pages 23-28.
    4. Pervanchon, F. & Bockstaller, C. & Girardin, P., 2002. "Assessment of energy use in arable farming systems by means of an agro-ecological indicator: the energy indicator," Agricultural Systems, Elsevier, vol. 72(2), pages 149-172, May.
    5. Tol, Richard S.J. & Pacala, Stephen W. & Socolow, Robert H., 2009. "Understanding Long-Term Energy Use and Carbon Dioxide Emissions in the USA," Journal of Policy Modeling, Elsevier, vol. 31(3), pages 425-445, May.
    6. Konyar, Kazim, 2001. "Assessing the role of US agriculture in reducing greenhouse gas emissions and generating additional environmental benefits," Ecological Economics, Elsevier, vol. 38(1), pages 85-103, July.
    7. Unakitan, G. & Hurma, H. & Yilmaz, F., 2010. "An analysis of energy use efficiency of canola production in Turkey," Energy, Elsevier, vol. 35(9), pages 3623-3627.
    8. Park, J. & Seaton, R. A. F., 1996. "Integrative research and sustainable agriculture," Agricultural Systems, Elsevier, vol. 50(1), pages 81-100.
    9. Meyer-Aurich, Andreas, 2005. "Economic and environmental analysis of sustainable farming practices - a Bavarian case study," Agricultural Systems, Elsevier, vol. 86(2), pages 190-206, November.
    10. Marland, G & Garten, C.T & Post, W.M & West, T.O, 2004. "Studies on enhancing carbon sequestration in soils," Energy, Elsevier, vol. 29(9), pages 1643-1650.
    11. Safa, M. & Samarasinghe, S. & Mohssen, M., 2010. "Determination of fuel consumption and indirect factors affecting it in wheat production in Canterbury, New Zealand," Energy, Elsevier, vol. 35(12), pages 5400-5405.
    12. Bonny, Sylvie, 1993. "Is agriculture using more and more energy? A French case study," Agricultural Systems, Elsevier, vol. 43(1), pages 51-66.
    13. Refsgaard, Karen & Halberg, Niels & Kristensen, Erik Steen, 1998. "Energy utilization in crop and dairy production in organic and conventional livestock production systems," Agricultural Systems, Elsevier, vol. 57(4), pages 599-630, August.
    14. Kalra, M.S. & Arya, Y.C., 1980. "Fossil-energy demands of crop-production in a multi-cropped area," Energy, Elsevier, vol. 5(11), pages 1163-1167.
    15. Swanton, Clarence J. & Murphy, Stephen D. & Hume, David J. & Clements, David R., 1996. "Recent improvements in the energy efficiency of agriculture: Case studies from Ontario, Canada," Agricultural Systems, Elsevier, vol. 52(4), pages 399-418, December.
    16. Dyer, J.A. & Kulshreshtha, S.N. & McConkey, B.G. & Desjardins, R.L., 2010. "An assessment of fossil fuel energy use and CO2 emissions from farm field operations using a regional level crop and land use database for Canada," Energy, Elsevier, vol. 35(5), pages 2261-2269.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barut, Zeliha Bereket & Ertekin, Can & Karaagac, Hasan Ali, 2011. "Tillage effects on energy use for corn silage in Mediterranean Coastal of Turkey," Energy, Elsevier, vol. 36(9), pages 5466-5475.
    2. Pervanchon, F. & Bockstaller, C. & Girardin, P., 2002. "Assessment of energy use in arable farming systems by means of an agro-ecological indicator: the energy indicator," Agricultural Systems, Elsevier, vol. 72(2), pages 149-172, May.
    3. Kaur, Navneet & Vashist, Krishan Kumar & Brar, A.S., 2021. "Energy and productivity analysis of maize based crop sequences compared to rice-wheat system under different moisture regimes," Energy, Elsevier, vol. 216(C).
    4. Yongqiang Zhang & Hao Sun & Maosheng Ge & Hang Zhao & Yifan Hu & Changyue Cui & Zhibin Wu, 2023. "Difference in Energy Input and Output in Agricultural Production under Surface Irrigation and Water-Saving Irrigation: A Case Study of Kiwi Fruit in Shaanxi," Sustainability, MDPI, vol. 15(4), pages 1-18, February.
    5. Wood, Richard & Lenzen, Manfred & Dey, Christopher & Lundie, Sven, 2006. "A comparative study of some environmental impacts of conventional and organic farming in Australia," Agricultural Systems, Elsevier, vol. 89(2-3), pages 324-348, September.
    6. Soltani, Afshin & Rajabi, M.H. & Zeinali, E. & Soltani, Elias, 2013. "Energy inputs and greenhouse gases emissions in wheat production in Gorgan, Iran," Energy, Elsevier, vol. 50(C), pages 54-61.
    7. Martinho, Vítor João Pereira Domingues, 2021. "Direct and indirect energy consumption in farming: Impacts from fertilizer use," Energy, Elsevier, vol. 236(C).
    8. Bojacá, Carlos Ricardo & Casilimas, Héctor Albeiro & Gil, Rodrigo & Schrevens, Eddie, 2012. "Extending the input–output energy balance methodology in agriculture through cluster analysis," Energy, Elsevier, vol. 47(1), pages 465-470.
    9. Singh, Pritpal & Singh, Gurdeep & Sodhi, G.P.S., 2019. "Applying DEA optimization approach for energy auditing in wheat cultivation under rice-wheat and cotton-wheat cropping systems in north-western India," Energy, Elsevier, vol. 181(C), pages 18-28.
    10. Cao, Shuyan & Xie, Gaodi & Zhen, Lin, 2010. "Total embodied energy requirements and its decomposition in China's agricultural sector," Ecological Economics, Elsevier, vol. 69(7), pages 1396-1404, May.
    11. Refsgaard, Karen & Halberg, Niels & Kristensen, Erik Steen, 1998. "Energy utilization in crop and dairy production in organic and conventional livestock production systems," Agricultural Systems, Elsevier, vol. 57(4), pages 599-630, August.
    12. Kraatz, Simone, 2012. "Energy intensity in livestock operations – Modeling of dairy farming systems in Germany," Agricultural Systems, Elsevier, vol. 110(C), pages 90-106.
    13. Unakıtan, Gökhan & Aydın, Başak, 2018. "A comparison of energy use efficiency and economic analysis of wheat and sunflower production in Turkey: A case study in Thrace Region," Energy, Elsevier, vol. 149(C), pages 279-285.
    14. Milazzo, M.F. & Spina, F. & Primerano, P. & Bart, J.C.J., 2013. "Soy biodiesel pathways: Global prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 579-624.
    15. Van linden, Veerle & Herman, Lieve, 2014. "A fuel consumption model for off-road use of mobile machinery in agriculture," Energy, Elsevier, vol. 77(C), pages 880-889.
    16. Özgöz, Engin & Altuntaş, Ebubekir & Asiltürk, Murat, 2017. "Effects of soil tillage on energy use in potato farming in Central Anatolia of Turkey," Energy, Elsevier, vol. 141(C), pages 1517-1523.
    17. Houshyar, Ehsan & Azadi, Hossein & Almassi, Morteza & Sheikh Davoodi, Mohammad Javad & Witlox, Frank, 2012. "Sustainable and efficient energy consumption of corn production in Southwest Iran: Combination of multi-fuzzy and DEA modeling," Energy, Elsevier, vol. 44(1), pages 672-681.
    18. Muazu, A. & Yahya, A. & Ishak, W.I.W. & Khairunniza-Bejo, S., 2015. "Energy audit for sustainable wetland paddy cultivation in Malaysia," Energy, Elsevier, vol. 87(C), pages 182-191.
    19. Houshyar, Ehsan & Grundmann, Philipp, 2017. "Environmental impacts of energy use in wheat tillage systems: A comparative life cycle assessment (LCA) study in Iran," Energy, Elsevier, vol. 122(C), pages 11-24.
    20. Milazzo, M.F. & Spina, F. & Vinci, A. & Espro, C. & Bart, J.C.J., 2013. "Brassica biodiesels: Past, present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 350-389.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:36:y:2011:i:7:p:4468-4481. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.