IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v87y2015icp182-191.html
   My bibliography  Save this article

Energy audit for sustainable wetland paddy cultivation in Malaysia

Author

Listed:
  • Muazu, A.
  • Yahya, A.
  • Ishak, W.I.W.
  • Khairunniza-Bejo, S.

Abstract

An on-the-farm evaluation of energy inputs and output in 40 farms was conducted to determine the distributions of six main energy sources (i.e. human, fuel, machinery, seeds, fertilizer and pesticides) used in wetland paddy cultivation in Malaysia. The average paddy yield was found to be 7625 kg/ha with total energy input of 16,440 MJ/ha, energy output/input ratio of 7.76 and energy intensity of 2.16 MJ/kg. Compared to energy intensities for the production of rice in China, India and Thailand of 3.91, 3.50 and 4.44 MJ/kg respectively, paddy farmers in Malaysia used the least energy per unit of paddy produced. Almost 84% of the total energy input used in the cultivation was from fossil-based non-renewable resources, of which fertilizer, fuel, pesticides and machinery accounted for 60, 17, 4 and 3% respectively. The share contributions from seed, human labor and organic fertilizer which constituted the renewable resources were 15, 0.25 and 0.22% respectively. The benefit-cost ratio and total cost of production were 1.37 and RM6, 657/ha respectively. The fitted regression model revealed a direct relationship of yield with fuel, machinery, fertilizer, pesticides and seed energy expenditures and an inverse relationship of yield with the human energy expenditure.

Suggested Citation

  • Muazu, A. & Yahya, A. & Ishak, W.I.W. & Khairunniza-Bejo, S., 2015. "Energy audit for sustainable wetland paddy cultivation in Malaysia," Energy, Elsevier, vol. 87(C), pages 182-191.
  • Handle: RePEc:eee:energy:v:87:y:2015:i:c:p:182-191
    DOI: 10.1016/j.energy.2015.04.066
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215005216
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.04.066?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Singh, H. & Singh, A.K. & Kushwaha, H.L. & Singh, Amit, 2007. "Energy consumption pattern of wheat production in India," Energy, Elsevier, vol. 32(10), pages 1848-1854.
    2. Mohammadi, Ali & Rafiee, Shahin & Mohtasebi, Seyed Saeid & Mousavi Avval, Seyed Hashem & Rafiee, Hamed, 2011. "Energy efficiency improvement and input cost saving in kiwifruit production using Data Envelopment Analysis approach," Renewable Energy, Elsevier, vol. 36(9), pages 2573-2579.
    3. Zangeneh, Morteza & Omid, Mahmoud & Akram, Asadollah, 2010. "A comparative study on energy use and cost analysis of potato production under different farming technologies in Hamadan province of Iran," Energy, Elsevier, vol. 35(7), pages 2927-2933.
    4. Pishgar-Komleh, S.H. & Sefeedpari, P. & Rafiee, S., 2011. "Energy and economic analysis of rice production under different farm levels in Guilan province of Iran," Energy, Elsevier, vol. 36(10), pages 5824-5831.
    5. Çetin, Bahattin & Vardar, Ali, 2008. "An economic analysis of energy requirements and input costs for tomato production in Turkey," Renewable Energy, Elsevier, vol. 33(3), pages 428-433.
    6. Tabatabaeefar, A. & Emamzadeh, H. & Varnamkhasti, M. Ghasemi & Rahimizadeh, R. & Karimi, M., 2009. "Comparison of energy of tillage systems in wheat production," Energy, Elsevier, vol. 34(1), pages 41-45.
    7. David Pimentel, 2009. "Energy Inputs in Food Crop Production in Developing and Developed Nations," Energies, MDPI, vol. 2(1), pages 1-24, January.
    8. Mohammadi, Ali & Omid, Mahmoud, 2010. "Economical analysis and relation between energy inputs and yield of greenhouse cucumber production in Iran," Applied Energy, Elsevier, vol. 87(1), pages 191-196, January.
    9. Safa, M. & Samarasinghe, S. & Mohssen, M., 2010. "Determination of fuel consumption and indirect factors affecting it in wheat production in Canterbury, New Zealand," Energy, Elsevier, vol. 35(12), pages 5400-5405.
    10. Lim, Jeng Shiun & Abdul Manan, Zainuddin & Wan Alwi, Sharifah Rafidah & Hashim, Haslenda, 2012. "A review on utilisation of biomass from rice industry as a source of renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3084-3094.
    11. Kiatpathomchai, Sirirat & Schmitz, P. Michael & Thongrak, Sutonya, 2009. "Technical efficiency improvement of rice farming in southern Thailand," 2009 Conference, August 16-22, 2009, Beijing, China 50554, International Association of Agricultural Economists.
    12. Ozkan, Burhan & Ceylan, R. Figen & Kizilay, Hatice, 2011. "Comparison of energy inputs in glasshouse double crop (fall and summer crops) tomato production," Renewable Energy, Elsevier, vol. 36(5), pages 1639-1644.
    13. Alluvione, Francesco & Moretti, Barbara & Sacco, Dario & Grignani, Carlo, 2011. "EUE (energy use efficiency) of cropping systems for a sustainable agriculture," Energy, Elsevier, vol. 36(7), pages 4468-4481.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Firouzi, Saeed & Nikkhah, Amin & Aminpanah, Hashem, 2018. "Resource use efficiency of rice production upon single cropping and ratooning agro-systems in terms of bioethanol feedstock production," Energy, Elsevier, vol. 150(C), pages 694-701.
    2. Elsoragaby, Suha & Yahya, Azmi & Mahadi, Muhammad Razif & Nawi, Nazmi Mat & Mairghany, Modather, 2019. "Analysis of energy use and greenhouse gas emissions (GHG) of transplanting and broadcast seeding wetland rice cultivation," Energy, Elsevier, vol. 189(C).
    3. Singh, Pritpal & Singh, Gurdeep & Sodhi, G.P.S., 2019. "Energy auditing and optimization approach for improving energy efficiency of rice cultivation in south-western Punjab, India," Energy, Elsevier, vol. 174(C), pages 269-279.
    4. Taheri-Rad, Alireza & Khojastehpour, Mehdi & Rohani, Abbas & Khoramdel, Surur & Nikkhah, Amin, 2017. "Energy flow modeling and predicting the yield of Iranian paddy cultivars using artificial neural networks," Energy, Elsevier, vol. 135(C), pages 405-412.
    5. Yang, Zhiyuan & Zhu, Yuemei & Zhang, Xiaoli & Liao, Qin & Fu, Hao & Cheng, Qingyue & Chen, Zongkui & Sun, Yongjian & Ma, Jun & Zhang, Jinyue & Li, Liangyu & Li, Na, 2023. "Unmanned aerial vehicle direct seeding or integrated mechanical transplanting, which will be the next step for mechanized rice production in China? —A comparison based on energy use efficiency and eco," Energy, Elsevier, vol. 273(C).
    6. Nadia Adnan & Shahrina Md Nordin, 2021. "How COVID 19 effect Malaysian paddy industry? Adoption of green fertilizer a potential resolution," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(6), pages 8089-8129, June.
    7. Yang, Zhiyuan & Zhu, Yuemei & Zhang, Jinyue & Li, Xuyi & Ma, Peng & Sun, Jiawei & Sun, Yongjian & Ma, Jun & Li, Na, 2022. "Comparison of energy use between fully mechanized and semi-mechanized rice production in Southwest China," Energy, Elsevier, vol. 245(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barut, Zeliha Bereket & Ertekin, Can & Karaagac, Hasan Ali, 2011. "Tillage effects on energy use for corn silage in Mediterranean Coastal of Turkey," Energy, Elsevier, vol. 36(9), pages 5466-5475.
    2. Elsoragaby, Suha & Yahya, Azmi & Mahadi, Muhammad Razif & Nawi, Nazmi Mat & Mairghany, Modather, 2019. "Energy utilization in major crop cultivation," Energy, Elsevier, vol. 173(C), pages 1285-1303.
    3. Yuan, Shen & Peng, Shaobing, 2017. "Input-output energy analysis of rice production in different crop management practices in central China," Energy, Elsevier, vol. 141(C), pages 1124-1132.
    4. Bhunia, Snehasish & Karmakar, Subrata & Bhattacharjee, Suvendu & Roy, Kingshuk & Kanthal, Sahely & Pramanick, Mahadev & Baishya, Aniket & Mandal, Biswapati, 2021. "Optimization of energy consumption using data envelopment analysis (DEA) in rice-wheat-green gram cropping system under conservation tillage practices," Energy, Elsevier, vol. 236(C).
    5. Soltani, Shiva & Mosavi, Seyed Habibollah & Saghaian, Sayed H. & Azhdari, Somayeh & Alamdarlo, Hamed N. & Khalilian, Sadegh, 2023. "Climate change and energy use efficiency in arid and semiarid agricultural areas: A case study of Hamadan-Bahar plain in Iran," Energy, Elsevier, vol. 268(C).
    6. Houshyar, Ehsan & Azadi, Hossein & Almassi, Morteza & Sheikh Davoodi, Mohammad Javad & Witlox, Frank, 2012. "Sustainable and efficient energy consumption of corn production in Southwest Iran: Combination of multi-fuzzy and DEA modeling," Energy, Elsevier, vol. 44(1), pages 672-681.
    7. Alhajj Ali, Salem & Tedone, Luigi & De Mastro, Giuseppe, 2013. "A comparison of the energy consumption of rainfed durum wheat under different management scenarios in southern Italy," Energy, Elsevier, vol. 61(C), pages 308-318.
    8. Yuan, Shen & Peng, Shaobing & Wang, Dong & Man, Jianguo, 2018. "Evaluation of the energy budget and energy use efficiency in wheat production under various crop management practices in China," Energy, Elsevier, vol. 160(C), pages 184-191.
    9. Morteza Zangeneh & Narges Banaeian & Sean Clark, 2021. "Meta-Analysis on Energy-Use Patterns of Cropping Systems in Iran," Sustainability, MDPI, vol. 13(7), pages 1-28, March.
    10. Singh, Pritpal & Singh, Gurdeep & Sodhi, G.P.S., 2019. "Applying DEA optimization approach for energy auditing in wheat cultivation under rice-wheat and cotton-wheat cropping systems in north-western India," Energy, Elsevier, vol. 181(C), pages 18-28.
    11. Asgharipour, Mohammad Reza & Mondani, Farzad & Riahinia, Shahram, 2012. "Energy use efficiency and economic analysis of sugar beet production system in Iran: A case study in Khorasan Razavi province," Energy, Elsevier, vol. 44(1), pages 1078-1084.
    12. Muhammad N. Ashraf & Muhammad H. Mahmood & Muhammad Sultan & Redmond R. Shamshiri & Sobhy M. Ibrahim, 2021. "Investigation of Energy Consumption and Associated CO 2 Emissions for Wheat–Rice Crop Rotation Farming," Energies, MDPI, vol. 14(16), pages 1-18, August.
    13. Tabatabaie, Seyed Mohammad Hossein & Rafiee, Shahin & Keyhani, Alireza, 2012. "Energy consumption flow and econometric models of two plum cultivars productions in Tehran province of Iran," Energy, Elsevier, vol. 44(1), pages 211-216.
    14. Plappally, A.K. & Lienhard V, J.H., 2012. "Energy requirements for water production, treatment, end use, reclamation, and disposal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4818-4848.
    15. Elahi, Ehsan & Zhang, Zhixin & Khalid, Zainab & Xu, Haiyun, 2022. "Application of an artificial neural network to optimise energy inputs: An energy- and cost-saving strategy for commercial poultry farms," Energy, Elsevier, vol. 244(PB).
    16. Özgöz, Engin & Altuntaş, Ebubekir & Asiltürk, Murat, 2017. "Effects of soil tillage on energy use in potato farming in Central Anatolia of Turkey," Energy, Elsevier, vol. 141(C), pages 1517-1523.
    17. Bardia Bayat & Mohammad Hossein Ansari & Marjan Diyanat & Ali Mohammadi ‎Torkashvand, 2023. "Optimising energy efficiency and ecological ‎footprint of off-season cucumber production agro-ecosystem upon different farm levels (Case of central Iran)," Horticultural Science, Czech Academy of Agricultural Sciences, vol. 50(3), pages 219-232.
    18. Marcin Wysokiński & Bogdan Klepacki & Piotr Gradziuk & Magdalena Golonko & Piotr Gołasa & Wioletta Bieńkowska-Gołasa & Barbara Gradziuk & Paulina Trębska & Aleksandra Lubańska & Danuta Guzal-Dec & Ark, 2021. "Economic and Energy Efficiency of Farms in Poland," Energies, MDPI, vol. 14(17), pages 1-21, September.
    19. Liang, Long & Lal, Rattan & Ridoutt, Bradley G. & Zhao, Guishen & Du, Zhangliu & Li, Li & Feng, Dangyang & Wang, Liyuan & Peng, Peng & Hang, Sheng & Wu, Wenliang, 2018. "Multi-indicator assessment of a water-saving agricultural engineering project in North Beijing, China," Agricultural Water Management, Elsevier, vol. 200(C), pages 34-46.
    20. Pishgar-Komleh, Seyyed Hassan & Omid, Mahmoud & Heidari, Mohammad Davoud, 2013. "On the study of energy use and GHG (greenhouse gas) emissions in greenhouse cucumber production in Yazd province," Energy, Elsevier, vol. 59(C), pages 63-71.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:87:y:2015:i:c:p:182-191. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.