IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v268y2023ics0360544222034405.html
   My bibliography  Save this article

Climate change and energy use efficiency in arid and semiarid agricultural areas: A case study of Hamadan-Bahar plain in Iran

Author

Listed:
  • Soltani, Shiva
  • Mosavi, Seyed Habibollah
  • Saghaian, Sayed H.
  • Azhdari, Somayeh
  • Alamdarlo, Hamed N.
  • Khalilian, Sadegh

Abstract

Climate change characterized by decreasing rainfall and rising temperature has become a dominant phenomenon in many Middle Eastern countries, including Iran. It may also affect energy use efficiency and productivity in the agricultural sector. This study investigated the effects of climate change on energy input and output in the agricultural sector of Hamadan-Bahar Plain in western Iran. Different physiological, meteorological, hydrological, and economical dimensions were considered within various time horizons and climate scenarios. As a result of a 14.8% reduction in precipitation and a 14.1% increase in temperature in the most optimistic scenarios on the horizon of 2090, climate change has affected water resource availability and agricultural production in the plain. As a result of these changes, agricultural energy use efficiency and energy productivity in the region have declined by 36.79% and 25.74%, respectively, as compared to the base year (2018). Furthermore, the results of this study indicate conventional approaches to cope with this phenomenon are mostly associated with higher energy input and lower energy output. For example, if deficit irrigation methods are used, the rate of reduction in energy efficiency and productivity in 2090 in the most optimistic scenario would be 39.21% and 28.02%, respectively. In other words, within the framework of the existing strategies, solving the problem of water scarcity is only possible at the expense of reduced energy efficiency. Hence, the continuation of current conditions would lead to higher production costs and environmental pollution as well as food insecurity in the coming decades.

Suggested Citation

  • Soltani, Shiva & Mosavi, Seyed Habibollah & Saghaian, Sayed H. & Azhdari, Somayeh & Alamdarlo, Hamed N. & Khalilian, Sadegh, 2023. "Climate change and energy use efficiency in arid and semiarid agricultural areas: A case study of Hamadan-Bahar plain in Iran," Energy, Elsevier, vol. 268(C).
  • Handle: RePEc:eee:energy:v:268:y:2023:i:c:s0360544222034405
    DOI: 10.1016/j.energy.2022.126553
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222034405
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.126553?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Singh, H. & Singh, A.K. & Kushwaha, H.L. & Singh, Amit, 2007. "Energy consumption pattern of wheat production in India," Energy, Elsevier, vol. 32(10), pages 1848-1854.
    2. Qiuqiong Huang & Richard Howitt & Scott Rozelle, 2012. "Estimating production technology for policy analysis: trading off precision and heterogeneity," Journal of Productivity Analysis, Springer, vol. 38(2), pages 219-233, October.
    3. Zangeneh, Morteza & Omid, Mahmoud & Akram, Asadollah, 2010. "A comparative study on energy use and cost analysis of potato production under different farming technologies in Hamadan province of Iran," Energy, Elsevier, vol. 35(7), pages 2927-2933.
    4. Pishgar-Komleh, S.H. & Sefeedpari, P. & Rafiee, S., 2011. "Energy and economic analysis of rice production under different farm levels in Guilan province of Iran," Energy, Elsevier, vol. 36(10), pages 5824-5831.
    5. Mohammadi, Ali & Rafiee, Shahin & Mohtasebi, Seyed Saeid & Rafiee, Hamed, 2010. "Energy inputs – yield relationship and cost analysis of kiwifruit production in Iran," Renewable Energy, Elsevier, vol. 35(5), pages 1071-1075.
    6. Kao, Chihwa, 1999. "Spurious regression and residual-based tests for cointegration in panel data," Journal of Econometrics, Elsevier, vol. 90(1), pages 1-44, May.
    7. Taghavifar, Hamid & Mardani, Aref, 2015. "Energy consumption analysis of wheat production in West Azarbayjan utilizing life cycle assessment (LCA)," Renewable Energy, Elsevier, vol. 74(C), pages 208-213.
    8. Ghorbani, Reza & Mondani, Farzad & Amirmoradi, Shahram & Feizi, Hassan & Khorramdel, Surror & Teimouri, Mozhgan & Sanjani, Sara & Anvarkhah, Sepideh & Aghel, Hassan, 2011. "A case study of energy use and economical analysis of irrigated and dryland wheat production systems," Applied Energy, Elsevier, vol. 88(1), pages 283-288, January.
    9. Peter Pedroni, 1999. "Critical Values for Cointegration Tests in Heterogeneous Panels with Multiple Regressors," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 61(S1), pages 653-670, November.
    10. Mosavi, Seyed Habibollah & Soltani, Shiva & Khalilian, Sadegh, 2020. "Coping with climate change in agriculture: Evidence from Hamadan-Bahar plain in Iran," Agricultural Water Management, Elsevier, vol. 241(C).
    11. Burhan Ozkan & Handan Akcaoz, 2002. "Impacts of climate factors on yields for selected crops in the Southern Turkey," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 7(4), pages 367-380, December.
    12. Hoffman, Eric & Cavigelli, Michel A. & Camargo, Gustavo & Ryan, Matthew & Ackroyd, Victoria J. & Richard, Tom L. & Mirsky, Steven, 2018. "Energy use and greenhouse gas emissions in organic and conventional grain crop production: Accounting for nutrient inflows," Agricultural Systems, Elsevier, vol. 162(C), pages 89-96.
    13. Pedroni, Peter, 1999. "Critical Values for Cointegration Tests in Heterogeneous Panels with Multiple Regressors," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 61(0), pages 653-670, Special I.
    14. Aidam, Patricia Woedem, 2015. "The impact of water-pricing policy on the demand for water resources by farmers in Ghana," Agricultural Water Management, Elsevier, vol. 158(C), pages 10-16.
    15. Mohammadi, Ali & Omid, Mahmoud, 2010. "Economical analysis and relation between energy inputs and yield of greenhouse cucumber production in Iran," Applied Energy, Elsevier, vol. 87(1), pages 191-196, January.
    16. Mohammad Davoud Heidari & Mahmoud Omid & Asadolah Akram, 2011. "Optimization of Energy Consumption of Broiler Production Farms using Data Envelopment Analysis Approach," Modern Applied Science, Canadian Center of Science and Education, vol. 5(3), pages 1-69, June.
    17. Fei, Rilong & Lin, Boqiang, 2016. "Energy efficiency and production technology heterogeneity in China's agricultural sector: A meta-frontier approach," Technological Forecasting and Social Change, Elsevier, vol. 109(C), pages 25-34.
    18. Chang, Ching-Cheng, 2002. "The potential impact of climate change on Taiwan's agriculture," Agricultural Economics, Blackwell, vol. 27(1), pages 51-64, May.
    19. Shamsuddin Shahid & Manzul Hazarika, 2010. "Groundwater Drought in the Northwestern Districts of Bangladesh," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 1989-2006, August.
    20. Böhmelt, Tobias, 2017. "Employing the shared socioeconomic pathways to predict CO2 emissions," Environmental Science & Policy, Elsevier, vol. 75(C), pages 56-64.
    21. Arellano, Manuel, 2003. "Panel Data Econometrics," OUP Catalogue, Oxford University Press, number 9780199245291, Decembrie.
    22. Balali, Hamid & Khalilian, Sadegh & Viaggi, Davide & Bartolini, Fabio & Ahmadian, Majid, 2011. "Groundwater balance and conservation under different water pricing and agricultural policy scenarios: A case study of the Hamadan-Bahar plain," Ecological Economics, Elsevier, vol. 70(5), pages 863-872, March.
    23. Caputo, Michael R. & Paris, Quirino, 2008. "Comparative statics of the generalized maximum entropy estimator of the general linear model," European Journal of Operational Research, Elsevier, vol. 185(1), pages 195-203, February.
    24. Tabatabaie, Seyed Mohammad Hossein & Rafiee, Shahin & Keyhani, Alireza & Heidari, Mohammad Davoud, 2013. "Energy use pattern and sensitivity analysis of energy inputs and input costs for pear production in Iran," Renewable Energy, Elsevier, vol. 51(C), pages 7-12.
    25. Torki-Harchegani, Mehdi & Ebrahimi, Rahim & Mahmoodi-Eshkaftaki, Mahmood, 2015. "Almond production in Iran: An analysis of energy use efficiency (2008–2011)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 217-224.
    26. Saeed Solaymani, 2021. "A Review on Energy and Renewable Energy Policies in Iran," Sustainability, MDPI, vol. 13(13), pages 1-23, June.
    27. Attavanich, Witsanu & McCarl, Bruce A., 2011. "The Effect of Climate Change, CO2 Fertilization, and Crop Production Technology on Crop Yields and Its Economic Implications on Market Outcomes and Welfare Distribution," 2011 Annual Meeting, July 24-26, 2011, Pittsburgh, Pennsylvania 103324, Agricultural and Applied Economics Association.
    28. Josué Medellín-Azuara & Richard Howitt & Duncan MacEwan & Jay Lund, 2011. "Economic impacts of climate-related changes to California agriculture," Climatic Change, Springer, vol. 109(1), pages 387-405, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mosavi, Seyed Habibollah & Soltani, Shiva & Khalilian, Sadegh, 2020. "Coping with climate change in agriculture: Evidence from Hamadan-Bahar plain in Iran," Agricultural Water Management, Elsevier, vol. 241(C).
    2. Morteza Zangeneh & Narges Banaeian & Sean Clark, 2021. "Meta-Analysis on Energy-Use Patterns of Cropping Systems in Iran," Sustainability, MDPI, vol. 13(7), pages 1-28, March.
    3. Asgharipour, Mohammad Reza & Mondani, Farzad & Riahinia, Shahram, 2012. "Energy use efficiency and economic analysis of sugar beet production system in Iran: A case study in Khorasan Razavi province," Energy, Elsevier, vol. 44(1), pages 1078-1084.
    4. Samira Shayanmehr & Jana Ivanič Porhajašová & Mária Babošová & Mahmood Sabouhi Sabouni & Hosein Mohammadi & Shida Rastegari Henneberry & Naser Shahnoushi Foroushani, 2022. "The Impacts of Climate Change on Water Resources and Crop Production in an Arid Region," Agriculture, MDPI, vol. 12(7), pages 1-22, July.
    5. Breitung, Jörg & Pesaran, Mohammad Hashem, 2005. "Unit roots and cointegration in panels," Discussion Paper Series 1: Economic Studies 2005,42, Deutsche Bundesbank.
    6. Muazu, A. & Yahya, A. & Ishak, W.I.W. & Khairunniza-Bejo, S., 2015. "Energy audit for sustainable wetland paddy cultivation in Malaysia," Energy, Elsevier, vol. 87(C), pages 182-191.
    7. Elsoragaby, Suha & Yahya, Azmi & Mahadi, Muhammad Razif & Nawi, Nazmi Mat & Mairghany, Modather, 2019. "Energy utilization in major crop cultivation," Energy, Elsevier, vol. 173(C), pages 1285-1303.
    8. Martin Wagner & Jaroslava Hlouskova, 2004. "What's Really the Story with this Balassa-Samuelson Effect in the CEECs?," Diskussionsschriften dp0416, Universitaet Bern, Departement Volkswirtschaft.
    9. Qamruzzaman, Md & Jianguo, Wei, 2020. "The asymmetric relationship between financial development, trade openness, foreign capital flows, and renewable energy consumption: Fresh evidence from panel NARDL investigation," Renewable Energy, Elsevier, vol. 159(C), pages 827-842.
    10. Md. Qamruzzaman & Jianguo Wei, 2019. "Financial Innovation and Financial Inclusion Nexus in South Asian Countries: Evidence from Symmetric and Asymmetric Panel Investigation," IJFS, MDPI, vol. 7(4), pages 1-27, October.
    11. Ziesemer, Thomas H.W., 2010. "The impact of the credit crisis on poor developing countries: Growth, worker remittances, accumulation and migration," Economic Modelling, Elsevier, vol. 27(5), pages 1230-1245, September.
    12. Francesca Iorio & Stefano Fachin, 2014. "Savings and investments in the OECD: a panel cointegration study with a new bootstrap test," Empirical Economics, Springer, vol. 46(4), pages 1271-1300, June.
    13. Ayad Hicham, 2017. "Financial Development and Poverty Reduction Nexus: A Co-Integration and Causality Analysis in Selected Arabic Countries," Academic Journal of Economic Studies, Faculty of Finance, Banking and Accountancy Bucharest,"Dimitrie Cantemir" Christian University Bucharest, vol. 3(2), pages 28-35, June.
    14. Iheonu O Chimere & Tochukwu Nwachukwu, 2020. "Macroeconomic determinants of household consumption in selected West African countries," Economics Bulletin, AccessEcon, vol. 40(2), pages 1596-1606.
    15. Marius-Răzvan Surugiu & Cristina-Raluca Mazilescu & Camelia Surugiu, 2021. "Analysis of the Tax Compliance in the EU: VECM and SEM," Mathematics, MDPI, vol. 9(17), pages 1-19, September.
    16. Herzer Dierk, 2022. "Semi-endogenous Versus Schumpeterian Growth Models: A Critical Review of the Literature and New Evidence," Review of Economics, De Gruyter, vol. 73(1), pages 1-55, April.
    17. Tongurai, Jittima & Vithessonthi, Chaiporn, 2018. "The impact of the banking sector on economic structure and growth," International Review of Financial Analysis, Elsevier, vol. 56(C), pages 193-207.
    18. Polemis, Michail & Fotis, Panagiotis, 2011. "Gasoline price asymmetries in the Euro Zone," MPRA Paper 32755, University Library of Munich, Germany.
    19. Hosan, Shahadat & Rahman, Md Matiar & Karmaker, Shamal Chandra & Saha, Bidyut Baran, 2023. "Energy subsidies and energy technology innovation: Policies for polygeneration systems diffusion," Energy, Elsevier, vol. 267(C).
    20. Valérie Mignon & Christophe Hurlin, 2007. "Une synthèse des tests de cointégration sur données de panel," Économie et Prévision, Programme National Persée, vol. 180(4), pages 241-265.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:268:y:2023:i:c:s0360544222034405. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.