IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v73y2021ics0301420721002282.html
   My bibliography  Save this article

Elasticity of substitution and biased technical change in the CES production function for China's metal-intensive industries

Author

Listed:
  • Zhu, Xuehong
  • Zeng, Anqi
  • Zhong, Meirui
  • Huang, Jianbai

Abstract

To achieve sustainable and green development, it is imperative for China, as the world's major metal consumer, to improve utilization efficiency and conservation of metal resources. Thus, understanding the industrial endogenous growth patterns of China regarding metal utilization and technical change becomes the prerequisite. Therefore, this paper regards metal as one of production factors nested with capital and labor, employs normalized supply-side system approach to estimate the elasticity of substitution in constant elasticity of substitution (CES) function and analyzes technical change bias based on the analytical framework built in this paper. Results show that: the optimal nesting structure for most metal-intensive industries are metal-capital composite nested with labor. And the metal input is less efficient than capital or labor in all metal-intensive industries. The technical change biases for metal-intensive industries are diversified, but only metal mining industries and heavy machinery manufacturing industries tend to save metal when expanding the production effectively. Targeted suggestions are made per industry according to the heterogeneity of production factors allocation and technical change biases.

Suggested Citation

  • Zhu, Xuehong & Zeng, Anqi & Zhong, Meirui & Huang, Jianbai, 2021. "Elasticity of substitution and biased technical change in the CES production function for China's metal-intensive industries," Resources Policy, Elsevier, vol. 73(C).
  • Handle: RePEc:eee:jrpoli:v:73:y:2021:i:c:s0301420721002282
    DOI: 10.1016/j.resourpol.2021.102216
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301420721002282
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2021.102216?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    2. Zha, Donglan & Kavuri, Anil Savio & Si, Songjian, 2018. "Energy-biased technical change in the Chinese industrial sector with CES production functions," Energy, Elsevier, vol. 148(C), pages 896-903.
    3. Lin, Boqiang & Ahmad, Izhar, 2016. "Energy substitution effect on transport sector of Pakistan based on trans-log production function," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1182-1193.
    4. Robert M. Solow, 1956. "A Contribution to the Theory of Economic Growth," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 70(1), pages 65-94.
    5. Alvarez-Cuadrado, Francisco & Long, Ngo Van & Poschke, Markus, 2018. "Capital-labor substitution, structural change and the labor income share," Journal of Economic Dynamics and Control, Elsevier, vol. 87(C), pages 206-231.
    6. Daron Acemoglu & Ufuk Akcigit & Douglas Hanley & William Kerr, 2016. "Transition to Clean Technology," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 52-104.
    7. Lin, Boqiang & Atsagli, Philip, 2017. "Inter-fuel substitution possibilities in South Africa: A translog production function approach," Energy, Elsevier, vol. 121(C), pages 822-831.
    8. Zhong, Meirui & Liu, Qing & Zeng, Anqi & Huang, Jianbai, 2018. "An effects analysis of China's metal mineral resource tax reform: A heterogeneous dynamic multi-regional CGE appraisal," Resources Policy, Elsevier, vol. 58(C), pages 303-313.
    9. Steve Sorrell, 2014. "Energy Substitution, Technical Change and Rebound Effects," Energies, MDPI, vol. 7(5), pages 1-24, April.
    10. Diamond, Peter & McFadden, Daniel & Rodriguez, Miguel, 1978. "Measurement of the Elasticity of Factor Substitution and Bias of Technical Change," Histoy of Economic Thought Chapters, in: Fuss, Melvyn & McFadden, Daniel (ed.),Production Economics: A Dual Approach to Theory and Applications, volume 2, chapter 5, McMaster University Archive for the History of Economic Thought.
    11. Eisenmenger, Nina & Wiedenhofer, Dominik & Schaffartzik, Anke & Giljum, Stefan & Bruckner, Martin & Schandl, Heinz & Wiedmann, Thomas O. & Lenzen, Manfred & Tukker, Arnold & Koning, Arjan, 2016. "Consumption-based material flow indicators — Comparing six ways of calculating the Austrian raw material consumption providing six results," Ecological Economics, Elsevier, vol. 128(C), pages 177-186.
    12. Haller, Stefanie A. & Hyland, Marie, 2014. "Capital–energy substitution: Evidence from a panel of Irish manufacturing firms," Energy Economics, Elsevier, vol. 45(C), pages 501-510.
    13. McAdam, Peter & Willman, Alpo & León-Ledesma, Miguel A., 2010. "In dubio pro CES - Supply estimation with mis-specified technical change," Working Paper Series 1175, European Central Bank.
    14. Daron Acemoglu, 1998. "Why Do New Technologies Complement Skills? Directed Technical Change and Wage Inequality," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 113(4), pages 1055-1089.
    15. Growiec, Jakub & Schumacher, Ingmar, 2008. "On technical change in the elasticities of resource inputs," Resources Policy, Elsevier, vol. 33(4), pages 210-221, December.
    16. Kemfert, Claudia, 1998. "Estimated substitution elasticities of a nested CES production function approach for Germany," Energy Economics, Elsevier, vol. 20(3), pages 249-264, June.
    17. Adetutu, Morakinyo O., 2014. "Energy efficiency and capital-energy substitutability: Evidence from four OPEC countries," Applied Energy, Elsevier, vol. 119(C), pages 363-370.
    18. Zhang, Jingjing, 2015. "International factor mobility, elasticity of substitution in production and the skilled–unskilled wage gap," International Review of Economics & Finance, Elsevier, vol. 35(C), pages 122-129.
    19. Daron Acemoglu, 2002. "Directed Technical Change," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 69(4), pages 781-809.
    20. Daron Acemoglu & Gino Gancia & Fabrizio Zilibotti, 2015. "Offshoring and Directed Technical Change," American Economic Journal: Macroeconomics, American Economic Association, vol. 7(3), pages 84-122, July.
    21. Irmen Andreas & Klump Rainer, 2009. "Factor Substitution, Income Distribution and Growth in a Generalized Neoclassical Model," German Economic Review, De Gruyter, vol. 10(4), pages 464-479, December.
    22. Lin, Boqiang & Liu, Weisheng, 2017. "Estimation of energy substitution effect in China's machinery industry--based on the corrected formula for elasticity of substitution," Energy, Elsevier, vol. 129(C), pages 246-254.
    23. Rainer Klump & Harald Preissler, 2000. "CES Production Functions and Economic Growth," Scandinavian Journal of Economics, Wiley Blackwell, vol. 102(1), pages 41-56, March.
    24. Olivier de La Grandville & Rainer Klump, 2000. "Economic Growth and the Elasticity of Substitution: Two Theorems and Some Suggestions," American Economic Review, American Economic Association, vol. 90(1), pages 282-291, March.
    25. Andreas Irmen & Rainer Klump, 2009. "Factor Substitution, Income Distribution and Growth in a Generalized Neoclassical Model," German Economic Review, Verein für Socialpolitik, vol. 10(4), pages 464-479, November.
    26. Laurits R. Christensen & Dale W. Jorgenson, 1969. "The Measurement Of U.S. Real Capital Input, 1929–1967," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 15(4), pages 293-320, December.
    27. Wesseh, Presley K. & Lin, Boqiang, 2020. "Energy substitution and technology costs in a transitional economy," Energy, Elsevier, vol. 203(C).
    28. Daron Acemoglu, 2003. "Labor- And Capital-Augmenting Technical Change," Journal of the European Economic Association, MIT Press, vol. 1(1), pages 1-37, March.
    29. Daron Acemoglu, 2015. "Localised and Biased Technologies: Atkinson and Stiglitz's New View, Induced Innovations, and Directed Technological Change," Economic Journal, Royal Economic Society, vol. 0(583), pages 443-463, March.
    30. Zha, Donglan & Ding, Ning, 2014. "Elasticities of substitution between energy and non-energy inputs in China power sector," Economic Modelling, Elsevier, vol. 38(C), pages 564-571.
    31. Lin, Boqiang & Wesseh, Presley K., 2013. "Estimates of inter-fuel substitution possibilities in Chinese chemical industry," Energy Economics, Elsevier, vol. 40(C), pages 560-568.
    32. Zhang, Chao & Chen, Wei-Qiang & Liu, Gang & Zhu, Da-Jian, 2017. "Economic Growth and the Evolution of Material Cycles: An Analytical Framework Integrating Material Flow and Stock Indicators," Ecological Economics, Elsevier, vol. 140(C), pages 265-274.
    33. Popp, David, 2004. "ENTICE: endogenous technological change in the DICE model of global warming," Journal of Environmental Economics and Management, Elsevier, vol. 48(1), pages 742-768, July.
    34. Zha, Donglan & Kavuri, Anil Savio & Si, Songjian, 2017. "Energy biased technology change: Focused on Chinese energy-intensive industries," Applied Energy, Elsevier, vol. 190(C), pages 1081-1089.
    35. Robert Solow, 1964. "Capital, Labor, and Income in Manufacturing," NBER Chapters, in: The Behavior of Income Shares: Selected Theoretical and Empirical Issues, pages 101-142, National Bureau of Economic Research, Inc.
    36. Lin, Boqiang & Chen, Xing, 2020. "How technological progress affects input substitution and energy efficiency in China: A case of the non-ferrous metals industry," Energy, Elsevier, vol. 206(C).
    37. Paul E. Brockway & Matthew K. Heun & João Santos & John R. Barrett, 2017. "Energy-Extended CES Aggregate Production: Current Aspects of Their Specification and Econometric Estimation," Energies, MDPI, vol. 10(2), pages 1-23, February.
    38. Ryuzo Sato & Tamaki Morita, 2009. "Quantity Or Quality: The Impact Of Labour Saving Innovation On Us And Japanese Growth Rates, 1960–2004," The Japanese Economic Review, Japanese Economic Association, vol. 60(4), pages 407-434, December.
    39. Robert E. Lipsey & Helen Stone Tice, 1989. "The Measurement of Saving, Investment, and Wealth," NBER Books, National Bureau of Economic Research, Inc, number lips89-1, March.
    40. Klump, Rainer & Saam, Marianne, 2008. "Calibration of normalised CES production functions in dynamic models," Economics Letters, Elsevier, vol. 99(2), pages 256-259, May.
    41. Koesler, Simon & Schymura, Michael, 2012. "Substitution elasticities in a CES production framework: An empirical analysis on the basis of non-linear least squares estimations," ZEW Discussion Papers 12-007, ZEW - Leibniz Centre for European Economic Research.
    42. Anil Markandya & Suzette Pedroso-Galinato, 2007. "How substitutable is natural capital?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 37(1), pages 297-312, May.
    43. M. Fischer‐Kowalski & F. Krausmann & S. Giljum & S. Lutter & A. Mayer & S. Bringezu & Y. Moriguchi & H. Schütz & H. Schandl & H. Weisz, 2011. "Methodology and Indicators of Economy‐wide Material Flow Accounting," Journal of Industrial Ecology, Yale University, vol. 15(6), pages 855-876, December.
    44. Antimiani, Alessandro & Costantini, Valeria & Paglialunga, Elena, 2015. "The sensitivity of climate-economy CGE models to energy-related elasticity parameters: Implications for climate policy design," Economic Modelling, Elsevier, vol. 51(C), pages 38-52.
    45. Kemfert, Claudia & Welsch, Heinz, 2000. "Energy-Capital-Labor Substitution and the Economic Effects of CO2 Abatement: Evidence for Germany," Journal of Policy Modeling, Elsevier, vol. 22(6), pages 641-660, November.
    46. Daron Acemoglu, 2007. "Equilibrium Bias of Technology," Econometrica, Econometric Society, vol. 75(5), pages 1371-1409, September.
    47. Mishra, SK, 2006. "A Note on Numerical Estimation of Sato’s Two-Level CES Production Function," MPRA Paper 1019, University Library of Munich, Germany, revised 02 Dec 2006.
    48. Temple, Jonathan, 2012. "The calibration of CES production functions," Journal of Macroeconomics, Elsevier, vol. 34(2), pages 294-303.
    49. van der Werf, Edwin, 2008. "Production functions for climate policy modeling: An empirical analysis," Energy Economics, Elsevier, vol. 30(6), pages 2964-2979, November.
    50. K. Sato, 1967. "A Two-Level Constant-Elasticity-of-Substitution Production Function," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 34(2), pages 201-218.
    51. Berndt, Ernst R & Wood, David O, 1975. "Technology, Prices, and the Derived Demand for Energy," The Review of Economics and Statistics, MIT Press, vol. 57(3), pages 259-268, August.
    52. Mallick, Debdulal, 2012. "The role of the elasticity of substitution in economic growth: A cross-country investigation," Labour Economics, Elsevier, vol. 19(5), pages 682-694.
    53. J. R. Moroney & John M. Trapani, 1981. "Factor Demand and Substitution in Mineral-Intensive Industries," Bell Journal of Economics, The RAND Corporation, vol. 12(1), pages 272-284, Spring.
    54. de La Grandville, Olivier, 1989. "In Quest of the Slutsky Diamond," American Economic Review, American Economic Association, vol. 79(3), pages 468-481, June.
    55. Pablo-Romero, María del P. & Sánchez-Braza, Antonio, 2015. "Productive energy use and economic growth: Energy, physical and human capital relationships," Energy Economics, Elsevier, vol. 49(C), pages 420-429.
    56. Antoszewski, Michał, 2019. "Wide-range estimation of various substitution elasticities for CES production functions at the sectoral level," Energy Economics, Elsevier, vol. 83(C), pages 272-289.
    57. Wang, Zhiping & Feng, Chao & Chen, Jinyu & Huang, Jianbai, 2017. "The driving forces of material use in China: An index decomposition analysis," Resources Policy, Elsevier, vol. 52(C), pages 336-348.
    58. Zha, Donglan & Zhou, Dequn, 2014. "The elasticity of substitution and the way of nesting CES production function with emphasis on energy input," Applied Energy, Elsevier, vol. 130(C), pages 793-798.
    59. Ayres, Robert & Voudouris, Vlasios, 2014. "The economic growth enigma: Capital, labour and useful energy?," Energy Policy, Elsevier, vol. 64(C), pages 16-28.
    60. Keting Shen & John Whalley, 2013. "Capital-Labor-Energy Substitution in Nested CES Production Functions for China," NBER Working Papers 19104, National Bureau of Economic Research, Inc.
    61. Dale Jorgenson & Barbara M. Fraumeni, 1989. "The Accumulation of Human and Nonhuman Capital, 1948-84," NBER Chapters, in: The Measurement of Saving, Investment, and Wealth, pages 227-286, National Bureau of Economic Research, Inc.
    62. V. Eldon Ball & Robert G. Chambers, 1982. "An Economic Analysis of Technology in the Meat Products Industry," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 64(4), pages 699-709.
    63. Leontief, Wassily, 1970. "Environmental Repercussions and the Economic Structure: An Input-Output Approach," The Review of Economics and Statistics, MIT Press, vol. 52(3), pages 262-271, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan Wang & Lingling Zuo & Shujing Qian, 2022. "Green-Biased Technical Change and Its Influencing Factors of Agriculture Industry: Empirical Evidence at the Provincial Level in China," IJERPH, MDPI, vol. 19(23), pages 1-24, December.
    2. Yujian Jin & Lihong Yu & Yan Wang, 2022. "Green Total Factor Productivity and Its Saving Effect on the Green Factor in China’s Strategic Minerals Industry from 1998–2017," IJERPH, MDPI, vol. 19(22), pages 1-20, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paul E. Brockway & Matthew K. Heun & João Santos & John R. Barrett, 2017. "Energy-Extended CES Aggregate Production: Current Aspects of Their Specification and Econometric Estimation," Energies, MDPI, vol. 10(2), pages 1-23, February.
    2. Matthew K. Heun & João Santos & Paul E. Brockway & Randall Pruim & Tiago Domingos & Marco Sakai, 2017. "From Theory to Econometrics to Energy Policy: Cautionary Tales for Policymaking Using Aggregate Production Functions," Energies, MDPI, vol. 10(2), pages 1-44, February.
    3. Michael Knoblach & Fabian Stöckl, 2020. "What Determines The Elasticity Of Substitution Between Capital And Labor? A Literature Review," Journal of Economic Surveys, Wiley Blackwell, vol. 34(4), pages 847-875, September.
    4. Rainer Klump & Peter McAdam & Alpo Willman, 2012. "The Normalized Ces Production Function: Theory And Empirics," Journal of Economic Surveys, Wiley Blackwell, vol. 26(5), pages 769-799, December.
    5. Fabian Stöckl, 2020. "Is Substitutability the New Efficiency? Endogenous Investment in the Elasticity of Substitution between Clean and Dirty Energy," Discussion Papers of DIW Berlin 1886, DIW Berlin, German Institute for Economic Research.
    6. Knoblach, Michael & Rößler, Martin & Zwerschke, Patrick, 2016. "The Elasticity of Factor Substitution Between Capital and Labor in the U.S. Economy: A Meta-Regression Analysis," CEPIE Working Papers 03/16, Technische Universität Dresden, Center of Public and International Economics (CEPIE).
    7. Feng, Shenghao & Zhang, Keyu, 2018. "Fuel-factor nesting structures in CGE models of China," Energy Economics, Elsevier, vol. 75(C), pages 274-284.
    8. Yazid Dissou & Lilia Karnizova & Qian Sun, 2015. "Industry-level Econometric Estimates of Energy-Capital-Labor Substitution with a Nested CES Production Function," Atlantic Economic Journal, Springer;International Atlantic Economic Society, vol. 43(1), pages 107-121, March.
    9. Zha, Donglan & Kavuri, Anil Savio & Si, Songjian, 2018. "Energy-biased technical change in the Chinese industrial sector with CES production functions," Energy, Elsevier, vol. 148(C), pages 896-903.
    10. Irmen, Andreas, 2011. "Steady-state growth and the elasticity of substitution," Journal of Economic Dynamics and Control, Elsevier, vol. 35(8), pages 1215-1228, August.
    11. Casey, Gregory, "undated". "Energy Efficiency and Directed Technical Change: Implications for Climate Change Mitigation," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 259959, Agricultural and Applied Economics Association.
    12. Lagomarsino, Elena, 2020. "Estimating elasticities of substitution with nested CES production functions: Where do we stand?," Energy Economics, Elsevier, vol. 88(C).
    13. Valeria Costantini & Francesco Crespi & Elena Paglialunga, 2019. "Capital–energy substitutability in manufacturing sectors: methodological and policy implications," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 9(2), pages 157-182, June.
    14. He, Yongda & Lin, Boqiang, 2019. "Heterogeneity and asymmetric effects in energy resources allocation of the manufacturing sectors in China," Energy, Elsevier, vol. 170(C), pages 1019-1035.
    15. Cao, Jing & Ho, Mun S. & Ma, Rong, 2020. "Analyzing carbon pricing policies using a general equilibrium model with production parameters estimated using firm data," Energy Economics, Elsevier, vol. 92(C).
    16. Song, Malin & Wang, Shuhong, 2016. "Can employment structure promote environment-biased technical progress?," Technological Forecasting and Social Change, Elsevier, vol. 112(C), pages 285-292.
    17. Knoblach, Michael, 2019. "Skill-biased technological change, endogenous labor supply, and the skill premium," CEPIE Working Papers 03/19, Technische Universität Dresden, Center of Public and International Economics (CEPIE).
    18. Xue, Jianpo & Yip, Chong K., 2012. "Factor Substitution And Economic Growth: A Unified Approach," Macroeconomic Dynamics, Cambridge University Press, vol. 16(4), pages 625-656, September.
    19. Zha, Donglan & Kavuri, Anil Savio & Si, Songjian, 2017. "Energy biased technology change: Focused on Chinese energy-intensive industries," Applied Energy, Elsevier, vol. 190(C), pages 1081-1089.
    20. Irmen, Andreas, 2010. "Steady-State Growth and the Elasticity of Substitution," Working Papers 0496, University of Heidelberg, Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:73:y:2021:i:c:s0301420721002282. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.