IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v83y2019icp272-289.html
   My bibliography  Save this article

Wide-range estimation of various substitution elasticities for CES production functions at the sectoral level

Author

Listed:
  • Antoszewski, Michał

Abstract

This paper provides a broad range of various substitution elasticity values for sectoral nested constant elasticity of substitution (CES) production functions, estimated through panel data techniques and using the World Input-Output Database (WIOD) as the main data source. Although the related empirical literature has been growing over the recent years, there is still no single study focused on a large-scale estimation of various, both product- and industry-specific, elasticities with the use of an internally consistent database and a common methodology for all the production function nests. This paper constitutes an attempt to fill this gap. The obtained estimates may subsequently be used by computable general equilibrium (CGE) modellers in their applied research – covering fiscal, labour market, trade, energy or environmental topics. Significant heterogeneity in the estimated elasticity values is observed between various industries/products as well as between various nests of the production function. This constitutes a strong argument against the arbitrary use of Leontief and/or Cobb-Douglas specifications in multi-sector CGE models.

Suggested Citation

  • Antoszewski, Michał, 2019. "Wide-range estimation of various substitution elasticities for CES production functions at the sectoral level," Energy Economics, Elsevier, vol. 83(C), pages 272-289.
  • Handle: RePEc:eee:eneeco:v:83:y:2019:i:c:p:272-289
    DOI: 10.1016/j.eneco.2019.07.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988319302373
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2019.07.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thursby, Jerry G & Lovell, C A Knox, 1978. "An Investigation of the Kmenta Approximation to the CES Function," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 19(2), pages 363-377, June.
    2. Marcel P. Timmer & Erik Dietzenbacher & Bart Los & Robert Stehrer & Gaaitzen J. Vries, 2015. "An Illustrated User Guide to the World Input–Output Database: the Case of Global Automotive Production," Review of International Economics, Wiley Blackwell, vol. 23(3), pages 575-605, August.
    3. Kemfert, Claudia, 1998. "Estimated substitution elasticities of a nested CES production function approach for Germany," Energy Economics, Elsevier, vol. 20(3), pages 249-264, June.
    4. Mika Saito, 2004. "Armington elasticities in intermediate inputs trade: a problem in using multilateral trade data," Canadian Journal of Economics, Canadian Economics Association, vol. 37(4), pages 1097-1117, November.
    5. Rainer Klump & Peter McAdam & Alpo Willman, 2012. "The Normalized Ces Production Function: Theory And Empirics," Journal of Economic Surveys, Wiley Blackwell, vol. 26(5), pages 769-799, December.
    6. Jakub Mućk, 2017. "Elasticity of substitution between labor and capital: robust evidence from developed economies," NBP Working Papers 271, Narodowy Bank Polski.
    7. Miguel A. León-Ledesma & Peter McAdam & Alpo Willman, 2010. "Identifying the Elasticity of Substitution with Biased Technical Change," American Economic Review, American Economic Association, vol. 100(4), pages 1330-1357, September.
    8. Paul E. Brockway & Matthew K. Heun & João Santos & John R. Barrett, 2017. "Energy-Extended CES Aggregate Production: Current Aspects of Their Specification and Econometric Estimation," Energies, MDPI, vol. 10(2), pages 1-23, February.
    9. Mas-Colell, Andreu & Whinston, Michael D. & Green, Jerry R., 1995. "Microeconomic Theory," OUP Catalogue, Oxford University Press, number 9780195102680, Decembrie.
    10. Frondel, Manuel & Schmidt, Christoph M., 2004. "Facing the truth about separability: nothing works without energy," Ecological Economics, Elsevier, vol. 51(3-4), pages 217-223, December.
    11. Németh, Gabriella & Szabó, László & Ciscar, Juan-Carlos, 2011. "Estimation of Armington elasticities in a CGE economy-energy-environment model for Europe," Economic Modelling, Elsevier, vol. 28(4), pages 1993-1999, July.
    12. van der Werf, Edwin, 2008. "Production functions for climate policy modeling: An empirical analysis," Energy Economics, Elsevier, vol. 30(6), pages 2964-2979, November.
    13. K. Sato, 1967. "A Two-Level Constant-Elasticity-of-Substitution Production Function," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 34(2), pages 201-218.
    14. Baccianti, Claudio, 2013. "Estimation of sectoral elasticities of substitution along the international technology frontier," ZEW Discussion Papers 13-092, ZEW - Leibniz Centre for European Economic Research.
    15. Henningsen, Arne & Henningsen, Geraldine & van der Werf, Edwin, 2019. "Capital-labour-energy substitution in a nested CES framework: A replication and update of Kemfert (1998)," Energy Economics, Elsevier, vol. 82(C), pages 16-25.
    16. Simon Koesler & Michael Schymura, 2015. "Substitution Elasticities In A Constant Elasticity Of Substitution Framework - Empirical Estimates Using Nonlinear Least Squares," Economic Systems Research, Taylor & Francis Journals, vol. 27(1), pages 101-121, March.
    17. Arne Henningsen & Géraldine Henningsen, 2011. "Econometric Estimation of the “Constant Elasticity of Substitution" Function in R: Package micEconCES," IFRO Working Paper 2011/9, University of Copenhagen, Department of Food and Resource Economics.
    18. Balistreri, Edward J. & McDaniel, Christine A. & Wong, Eina Vivian, 2003. "An estimation of US industry-level capital-labor substitution elasticities: support for Cobb-Douglas," The North American Journal of Economics and Finance, Elsevier, vol. 14(3), pages 343-356, December.
    19. Beckman, Jayson & Hertel, Thomas & Tyner, Wallace, 2011. "Validating energy-oriented CGE models," Energy Economics, Elsevier, vol. 33(5), pages 799-806, September.
    20. Prywes, Menahem, 1986. "A nested CES approach to capital-energy substitution," Energy Economics, Elsevier, vol. 8(1), pages 22-28, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michał Antoszewski, 2020. "Macroeconomic, Sectoral and Fiscal Consequences of Decreasing Energy Intensity in the Polish Economy," Gospodarka Narodowa. The Polish Journal of Economics, Warsaw School of Economics, issue 3, pages 53-81.
    2. Ernst, Anne & Hinterlang, Natascha & Mahle, Alexander & Stähler, Nikolai, 2022. "Carbon pricing, border adjustment and climate clubs: An assessment with EMuSe," Discussion Papers 25/2022, Deutsche Bundesbank.
    3. Natascha Hinterlang, 2023. "Effects of Carbon Pricing in Germany and Spain: An Assessment with EMuSe," Working Papers 2328, Banco de España.
    4. Hinterlang, Natascha & Martin, Anika & Röhe, Oke & Stähler, Nikolai & Strobel, Johannes, 2021. "Using energy and emissions taxation to finance labor tax reductions in a multi-sector economy: An assessment with EMuSe," Discussion Papers 50/2021, Deutsche Bundesbank.
    5. An, Kangxin & Wang, Can & Cai, Wenjia, 2023. "Low-carbon technology diffusion and economic growth of China: an evolutionary general equilibrium framework," Structural Change and Economic Dynamics, Elsevier, vol. 65(C), pages 253-263.
    6. Mardones, Cristian & Ortega, José, 2021. "Are the emissions trading systems’ simulations generated with a computable general equilibrium model sensitive to the nested production structure?," Applied Energy, Elsevier, vol. 298(C).
    7. Lagomarsino, Elena, 2020. "Estimating elasticities of substitution with nested CES production functions: Where do we stand?," Energy Economics, Elsevier, vol. 88(C).
    8. Zhu, Xuehong & Zeng, Anqi & Zhong, Meirui & Huang, Jianbai, 2021. "Elasticity of substitution and biased technical change in the CES production function for China's metal-intensive industries," Resources Policy, Elsevier, vol. 73(C).
    9. Ernst, Anne & Hinterlang, Natascha & Mahle, Alexander & Stähler, Nikolai, 2023. "Carbon pricing, border adjustment and climate clubs: Options for international cooperation," Journal of International Economics, Elsevier, vol. 144(C).
    10. Malliet, Paul & Reynès, Frédéric G., 2022. "Empirical estimates of the elasticity of substitution of a KLEM production function without nesting constraints: The case of the Variable Output Elasticity-Cobb Douglas," Conference papers 333423, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    11. Duan, Hongbo & Bao, Qin & Tian, Kailan & Wang, Shouyang & Yang, Cuihong & Cai, Zongwu, 2021. "The hit of the novel coronavirus outbreak to China's economy," China Economic Review, Elsevier, vol. 67(C).
    12. Cao, Jing & Ho, Mun S. & Ma, Rong, 2020. "Analyzing carbon pricing policies using a general equilibrium model with production parameters estimated using firm data," Energy Economics, Elsevier, vol. 92(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michal Antoszewski, 2017. "Panel estimation of sectoral substitution elasticities for CES production functions," EcoMod2017 10160, EcoMod.
    2. Lagomarsino, Elena, 2020. "Estimating elasticities of substitution with nested CES production functions: Where do we stand?," Energy Economics, Elsevier, vol. 88(C).
    3. Malliet, Paul & Reynès, Frédéric G., 2022. "Empirical estimates of the elasticity of substitution of a KLEM production function without nesting constraints: The case of the Variable Output Elasticity-Cobb Douglas," Conference papers 333423, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    4. Knoblach, Michael & Rößler, Martin & Zwerschke, Patrick, 2016. "The Elasticity of Factor Substitution Between Capital and Labor in the U.S. Economy: A Meta-Regression Analysis," CEPIE Working Papers 03/16, Technische Universität Dresden, Center of Public and International Economics (CEPIE).
    5. Koesler, Simon & Schymura, Michael, 2012. "Substitution elasticities in a CES production framework: An empirical analysis on the basis of non-linear least squares estimations," ZEW Discussion Papers 12-007, ZEW - Leibniz Centre for European Economic Research.
    6. Henningsen, Arne & Henningsen, Geraldine & van der Werf, Edwin, 2019. "Capital-labour-energy substitution in a nested CES framework: A replication and update of Kemfert (1998)," Energy Economics, Elsevier, vol. 82(C), pages 16-25.
    7. Simon Koesler & Michael Schymura, 2012. "Substitution Elasticities for CGE Models," EcoMod2012 4010, EcoMod.
    8. Zachlod-Jelec, Magdalena & Boratynski, Jakub, 2016. "How large and uncertain are costs of 2030 GHG emissions reduction target for the European countries? Sensitivity analysis in a global CGE model," MF Working Papers 26, Ministry of Finance in Poland.
    9. Matthew K. Heun & João Santos & Paul E. Brockway & Randall Pruim & Tiago Domingos & Marco Sakai, 2017. "From Theory to Econometrics to Energy Policy: Cautionary Tales for Policymaking Using Aggregate Production Functions," Energies, MDPI, vol. 10(2), pages 1-44, February.
    10. Simon Koesler & Michael Schymura, 2015. "Substitution Elasticities In A Constant Elasticity Of Substitution Framework - Empirical Estimates Using Nonlinear Least Squares," Economic Systems Research, Taylor & Francis Journals, vol. 27(1), pages 101-121, March.
    11. Paul E. Brockway & Matthew K. Heun & João Santos & John R. Barrett, 2017. "Energy-Extended CES Aggregate Production: Current Aspects of Their Specification and Econometric Estimation," Energies, MDPI, vol. 10(2), pages 1-23, February.
    12. Lagomarsino, Elena, 2021. "Which nesting structure for the CES? A new selection approach based on input separability," Economic Modelling, Elsevier, vol. 102(C).
    13. Yazid Dissou & Lilia Karnizova & Qian Sun, 2015. "Industry-level Econometric Estimates of Energy-Capital-Labor Substitution with a Nested CES Production Function," Atlantic Economic Journal, Springer;International Atlantic Economic Society, vol. 43(1), pages 107-121, March.
    14. Inoue, Emiko & Taniguchi, Hiroya & Yamada, Ken, 2022. "Measuring energy-saving technological change: International trends and differences," Journal of Environmental Economics and Management, Elsevier, vol. 115(C).
    15. Zha, Donglan & Kavuri, Anil Savio & Si, Songjian, 2018. "Energy-biased technical change in the Chinese industrial sector with CES production functions," Energy, Elsevier, vol. 148(C), pages 896-903.
    16. Michael Knoblach & Fabian Stöckl, 2020. "What Determines The Elasticity Of Substitution Between Capital And Labor? A Literature Review," Journal of Economic Surveys, Wiley Blackwell, vol. 34(4), pages 847-875, September.
    17. Magdalena Zachlod-Jelec & Jakub Boratyński, 2016. "How large and uncertain are costs of 2030 emission reduction target for the European countries? Sensitivity analysis in a global CGE model," EcoMod2016 9449, EcoMod.
    18. Gerassimos Bertsatos & Nicholas Tsounis, 2023. "Assessing the Impact of Trade Barriers on Energy Use in Turbulent Times: Current Conditions and Future Outlook for Greece," Energies, MDPI, vol. 16(15), pages 1-25, August.
    19. Patrizio Lecca & Javier Barbero Jimenez & Martin Aaroe Christensen & Andrea Conte & Francesco Di Comite & Jorge Diaz-Lanchas & Olga Diukanova & Giovanni Mandras & Damiaan Persyn & Stylianos Sakkas, 2018. "RHOMOLO V3:A Spatial Modelling Framework," JRC Research Reports JRC111861, Joint Research Centre.
    20. Trenczek, Jan & Wacker, Konstantin M., 2023. "Human Capital Misallocation and Output per Worker Differences: Beyond Cobb-Douglas," GLO Discussion Paper Series 1331, Global Labor Organization (GLO).

    More about this item

    Keywords

    Substitution elasticity; CES production function; CGE modelling; Energy economics; Panel estimation;
    All these keywords.

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • D57 - Microeconomics - - General Equilibrium and Disequilibrium - - - Input-Output Tables and Analysis
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:83:y:2019:i:c:p:272-289. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.