IDEAS home Printed from https://ideas.repec.org/p/wbk/wbrwps/3803.html
   My bibliography  Save this paper

How substitutable is natural capital ?

Author

Listed:
  • Markandya, Anil
  • Pedroso-Galinato, Suzette

Abstract

One of the recurring themes in the sustainability literature has been the legitimacy of using an economic framework to account for natural resources. This paper examines the potential for substituting between different inputs in the generation of income, where the inputs include natural resources such as land and energy resources. A nested constant elasticity of substitution (CES) production function is used to allow flexibility in the estimated elasticities of substitution. Also, with this specification, natural resources and other inputs are combined in different levels of the function, thus allowing for different levels of substitutability. Institutional and economic indicators are also incorporated in the production function estimated. Results show that the elasticities derived from functions involving land resources were generally around one or greater, implying a fairly high degree of substitutability. Furthermore, changes in trade openness and private sector investment have a statistically significant and direct relationship with income generation. No statistically significant relationship between income and any of the institutional indicators was found.

Suggested Citation

  • Markandya, Anil & Pedroso-Galinato, Suzette, 2006. "How substitutable is natural capital ?," Policy Research Working Paper Series 3803, The World Bank.
  • Handle: RePEc:wbk:wbrwps:3803
    as

    Download full text from publisher

    File URL: http://www-wds.worldbank.org/external/default/WDSContentServer/WDSP/IB/2006/01/09/000016406_20060109154722/Rendered/PDF/wps3803.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Geir Asheim & Wolfgang Buchholz & Cees Withagen, 2003. "The Hartwick Rule: Myths and Facts," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 25(2), pages 129-150, June.
    2. Griffin, James M & Gregory, Paul R, 1976. "An Intercountry Translog Model of Energy Substitution Responses," American Economic Review, American Economic Association, vol. 66(5), pages 845-857, December.
    3. Barro, Robert J & Lee, Jong-Wha, 2001. "International Data on Educational Attainment: Updates and Implications," Oxford Economic Papers, Oxford University Press, vol. 53(3), pages 541-563, July.
    4. Berndt, Ernst R & Wood, David O, 1979. "Engineering and Econometric Interpretations of Energy-Capital Complementarity," American Economic Review, American Economic Association, vol. 69(3), pages 342-354, June.
    5. Griffin, James M, 1981. "Engineering and Econometric Interpretations of Energy-Capital Complementarity: Comment," American Economic Review, American Economic Association, vol. 71(5), pages 1100-1104, December.
    6. Kemfert, Claudia, 1998. "Estimated substitution elasticities of a nested CES production function approach for Germany," Energy Economics, Elsevier, vol. 20(3), pages 249-264, June.
    7. Hnatkovska, Viktoria & Loayza, Norman, 2004. "Volatility and growth," Policy Research Working Paper Series 3184, The World Bank.
    8. Chang, Kuo-Ping, 1994. "Capital-energy substitution and the multi-level CES production function," Energy Economics, Elsevier, vol. 16(1), pages 22-26, January.
    9. Gasper A. Garofalo & Devinder M. Malhotra, 1988. "Aggregation of Capital and Its Substitution with Energy," Eastern Economic Journal, Eastern Economic Association, vol. 14(3), pages 251-262, Jul-Sep.
    10. Solow, John L, 1987. "The Capital-Energy Complementarity Debate Revisited," American Economic Review, American Economic Association, vol. 77(4), pages 605-614, September.
    11. repec:wbk:wbpubs:12425 is not listed on IDEAS
    12. Alan Manne & Richard Richels, 1992. "Buying Greenhouse Insurance: The Economic Costs of CO2 Emission Limits," MIT Press Books, The MIT Press, edition 1, volume 1, number 026213280x, December.
    13. Anderson, Kent P., 1972. "Optimal growth when the stock of resources is finite and depletable," Journal of Economic Theory, Elsevier, vol. 4(2), pages 256-267, April.
    14. J. R. Moroney & John M. Trapani, 1981. "Factor Demand and Substitution in Mineral-Intensive Industries," Bell Journal of Economics, The RAND Corporation, vol. 12(1), pages 272-284, Spring.
    15. Kirk Hamilton, 1995. "Sustainable development, the Hartwick rule and optimal growth," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 5(4), pages 393-411, June.
    16. World Bank, 2005. "World Development Indicators 2005," World Bank Publications - Books, The World Bank Group, number 12426, December.
    17. Mitra, Tapan, 1978. "Efficient growth with exhaustible resources in a neoclassical model," Journal of Economic Theory, Elsevier, vol. 17(1), pages 114-129, February.
    18. Prywes, Menahem, 1986. "A nested CES approach to capital-energy substitution," Energy Economics, Elsevier, vol. 8(1), pages 22-28, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koetse, Mark J. & de Groot, Henri L.F. & Florax, Raymond J.G.M., 2008. "Capital-energy substitution and shifts in factor demand: A meta-analysis," Energy Economics, Elsevier, vol. 30(5), pages 2236-2251, September.
    2. Hepburn, Cameron & Teytelboym, Alexander & Cohen, Francois, 2018. "Is Natural Capital Really Substitutable?," INET Oxford Working Papers 2018-12, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.
    3. He, Yongda & Lin, Boqiang, 2019. "Heterogeneity and asymmetric effects in energy resources allocation of the manufacturing sectors in China," Energy, Elsevier, vol. 170(C), pages 1019-1035.
    4. Lecca, Patrizio & Swales, Kim & Turner, Karen, 2011. "An investigation of issues relating to where energy should enter the production function," Economic Modelling, Elsevier, vol. 28(6), pages 2832-2841.
    5. Kim, Jihyo & Heo, Eunnyeong, 2013. "Asymmetric substitutability between energy and capital: Evidence from the manufacturing sectors in 10 OECD countries," Energy Economics, Elsevier, vol. 40(C), pages 81-89.
    6. Lagomarsino, Elena, 2020. "Estimating elasticities of substitution with nested CES production functions: Where do we stand?," Energy Economics, Elsevier, vol. 88(C).
    7. Elena Lagomarsino & Karen Turner, 2017. "Is the production function Translog or CES? An empirical illustration using UK data," Working Papers 1713, University of Strathclyde Business School, Department of Economics.
    8. A. Greening, Lorna & Greene, David L. & Difiglio, Carmen, 2000. "Energy efficiency and consumption -- the rebound effect -- a survey," Energy Policy, Elsevier, vol. 28(6-7), pages 389-401, June.
    9. Khalid, Waqar & Özdeşer, Hüseyin & Jalil, Abdul, 2021. "An empirical analysis of inter-factor and inter-fuel substitution in the energy sector of Pakistan," Renewable Energy, Elsevier, vol. 177(C), pages 953-966.
    10. Nguyen, Sang V & Streitwieser, Mary L, 1999. "Factor Substitution in U.S. Manufacturing: Does Plant Size Matter?," Small Business Economics, Springer, vol. 12(1), pages 41-57, February.
    11. Inoue, Emiko & Taniguchi, Hiroya & Yamada, Ken, 2022. "Measuring energy-saving technological change: International trends and differences," Journal of Environmental Economics and Management, Elsevier, vol. 115(C).
    12. Kemfert, Claudia & Welsch, Heinz, 2000. "Energy-Capital-Labor Substitution and the Economic Effects of CO2 Abatement: Evidence for Germany," Journal of Policy Modeling, Elsevier, vol. 22(6), pages 641-660, November.
    13. Lin, Boqiang & Xie, Chunping, 2014. "Energy substitution effect on transport industry of China-based on trans-log production function," Energy, Elsevier, vol. 67(C), pages 213-222.
    14. Lin, Boqiang & Atsagli, Philip & Dogah, Kingsley E., 2016. "Ghanaian energy economy: Inter-production factors and energy substitution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1260-1269.
    15. Malliet, Paul & Reynès, Frédéric G., 2022. "Empirical estimates of the elasticity of substitution of a KLEM production function without nesting constraints: The case of the Variable Output Elasticity-Cobb Douglas," Conference papers 333423, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    16. Valeria Costantini & Francesco Crespi & Elena Paglialunga, 2019. "Capital–energy substitutability in manufacturing sectors: methodological and policy implications," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 9(2), pages 157-182, June.
    17. Yazid Dissou & Lilia Karnizova & Qian Sun, 2015. "Industry-level Econometric Estimates of Energy-Capital-Labor Substitution with a Nested CES Production Function," Atlantic Economic Journal, Springer;International Atlantic Economic Society, vol. 43(1), pages 107-121, March.
    18. Andrei Polbin & Sergey Drobyshevsky, 2014. "Developing a Dynamic Stochastic Model of General Equilibrium for the Russian Economy," Research Paper Series, Gaidar Institute for Economic Policy, issue 166P, pages 156-156.
    19. Halkos, George & Tzeremes, Nickolaos, 2011. "The effect of energy consumption on countries’ economic efficiency: a conditional robust non parametric approach," MPRA Paper 28692, University Library of Munich, Germany.
    20. Nicholas Lee & Hsiang-Jane Su & Ming-Chin Lin, 2018. "Electricity Consumption and Green Mortgage: New Insights into the Threshold Cointegration Relationship," International Journal of Energy Economics and Policy, Econjournals, vol. 8(2), pages 39-46.

    More about this item

    Keywords

    Economic Theory&Research; Inequality; Economic Growth; Banks&Banking Reform; Climate Change;
    All these keywords.

    JEL classification:

    • O47 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - Empirical Studies of Economic Growth; Aggregate Productivity; Cross-Country Output Convergence
    • Q24 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Land
    • Q32 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation - - - Exhaustible Resources and Economic Development

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wbk:wbrwps:3803. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Roula I. Yazigi (email available below). General contact details of provider: https://edirc.repec.org/data/dvewbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.