IDEAS home Printed from https://ideas.repec.org/a/eee/jeeman/v79y2016icp1-17.html
   My bibliography  Save this article

Measuring the rebound effect with micro data: A first difference approach

Author

Listed:
  • De Borger, Bruno
  • Mulalic, Ismir
  • Rouwendal, Jan

Abstract

We provide estimates of the rebound effect for car transport in Denmark, using a rich data set with individual household data on car use, fuel efficiency, and car as well as household characteristics. A demand model is estimated in first differences; the availability of households in the sample that replaced their car during the period of observation combined with information on their driving behaviour before and after the car switch allows us to identify the rebound effect. Endogeneity is taken into account by using appropriate instruments. Results include the following. First, we reject the ‘conventional’ formulation in which only fuel cost per kilometre matters. Second, the selection equation confirms that higher fuel prices induce households to switch car. Third, the results suggest the presence of a rebound effect that is on the lower end of the estimates available in the literature. Specifically, our best estimate of the rebound effect is some 7.5–10%. Fourth, the fuel price sensitivity of the demand for kilometres appears to be declining with household income, but we do not find a significant impact of income on the rebound effect. Finally, simulation results indicate that the small rebound effect and changes in car characteristics in response to higher fuel prices imply that – compared to the reference scenario – higher fuel prices lead to a substantial reduction in both the demand for kilometres and in demand for fuel.

Suggested Citation

  • De Borger, Bruno & Mulalic, Ismir & Rouwendal, Jan, 2016. "Measuring the rebound effect with micro data: A first difference approach," Journal of Environmental Economics and Management, Elsevier, vol. 79(C), pages 1-17.
  • Handle: RePEc:eee:jeeman:v:79:y:2016:i:c:p:1-17
    DOI: 10.1016/j.jeem.2016.04.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0095069616300134
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeem.2016.04.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Joshua Linn, 2016. "The Rebound Effect for Passenger Vehicles," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    2. Anderson, Soren T. & Kellogg, Ryan & Sallee, James M., 2013. "What do consumers believe about future gasoline prices?," Journal of Environmental Economics and Management, Elsevier, vol. 66(3), pages 383-403.
    3. Kenneth A. Small & Kurt Van Dender, 2007. "Fuel Efficiency and Motor Vehicle Travel: The Declining Rebound Effect," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 25-52.
    4. Christopher R. Knittel, 2012. "Reducing Petroleum Consumption from Transportation," Journal of Economic Perspectives, American Economic Association, vol. 26(1), pages 93-118, Winter.
    5. David L. Greene & James R. Kahn & Robert C. Gibson, 1999. "Fuel Economy Rebound Effect for U.S. Household Vehicles," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 1-31.
    6. Mabit, Stefan L., 2014. "Vehicle type choice under the influence of a tax reform and rising fuel prices," Transportation Research Part A: Policy and Practice, Elsevier, vol. 64(C), pages 32-42.
    7. Kenneth Gillingham & David Rapson & Gernot Wagner, 2016. "The Rebound Effect and Energy Efficiency Policy," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 10(1), pages 68-88.
    8. Kenneth Gillingham & Matthew J. Kotchen & David S. Rapson & Gernot Wagner, 2013. "The rebound effect is overplayed," Nature, Nature, vol. 493(7433), pages 475-476, January.
    9. Philippe Barla & Bernard Lamonde & Luis Miranda-Moreno & Nathalie Boucher, 2009. "Traveled distance, stock and fuel efficiency of private vehicles in Canada: price elasticities and rebound effect," Transportation, Springer, vol. 36(4), pages 389-402, July.
    10. De Borger, Bruno & Mulalic, Ismir, 2012. "The determinants of fuel use in the trucking industry—volume, fleet characteristics and the rebound effect," Transport Policy, Elsevier, vol. 24(C), pages 284-295.
    11. Severin Borenstein, 2014. "A Microeconomic Framework for Evaluating Energy Efficiency Rebound and Some Implications," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    12. Shanjun Li & Joshua Linn & Erich Muehlegger, 2014. "Gasoline Taxes and Consumer Behavior," American Economic Journal: Economic Policy, American Economic Association, vol. 6(4), pages 302-342, November.
    13. Kenneth E. Train & Clifford Winston, 2007. "Vehicle Choice Behavior And The Declining Market Share Of U.S. Automakers," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 48(4), pages 1469-1496, November.
    14. A. Greening, Lorna & Greene, David L. & Difiglio, Carmen, 2000. "Energy efficiency and consumption -- the rebound effect -- a survey," Energy Policy, Elsevier, vol. 28(6-7), pages 389-401, June.
    15. Klier, Thomas & Linn, Joshua, 2013. "Fuel prices and new vehicle fuel economy—Comparing the United States and Western Europe," Journal of Environmental Economics and Management, Elsevier, vol. 66(2), pages 280-300.
    16. Sylvain Weber & Mehdi Farsi, 2014. "Travel distance, fuel efficiency, and vehicle weight: An estimation of the rebound effect using individual data in Switzerland," IRENE Working Papers 14-03, IRENE Institute of Economic Research.
    17. Odeck, James & Johansen, Kjell, 2016. "Elasticities of fuel and traffic demand and the direct rebound effects: An econometric estimation in the case of Norway," Transportation Research Part A: Policy and Practice, Elsevier, vol. 83(C), pages 1-13.
    18. Hymel, Kent M. & Small, Kenneth A. & Dender, Kurt Van, 2010. "Induced demand and rebound effects in road transport," Transportation Research Part B: Methodological, Elsevier, vol. 44(10), pages 1220-1241, December.
    19. Greene, David L., 2012. "Rebound 2007: Analysis of U.S. light-duty vehicle travel statistics," Energy Policy, Elsevier, vol. 41(C), pages 14-28.
    20. Berry, Steven & Levinsohn, James & Pakes, Ariel, 1995. "Automobile Prices in Market Equilibrium," Econometrica, Econometric Society, vol. 63(4), pages 841-890, July.
    21. Manuel Frondel & Jorg Peters & Colin Vance, 2008. "Identifying the Rebound: Evidence from a German Household Panel," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 145-164.
    22. Thomas Klier & Joshua Linn, 2010. "The Price of Gasoline and New Vehicle Fuel Economy: Evidence from Monthly Sales Data," American Economic Journal: Economic Policy, American Economic Association, vol. 2(3), pages 134-153, August.
    23. Nathan W. Chan & Kenneth Gillingham, 2015. "The Microeconomic Theory of the Rebound Effect and Its Welfare Implications," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 2(1), pages 133-159.
    24. Fred Mannering & Clifford Winston, 1985. "A Dynamic Empirical Analysis of Household Vehicle Ownership and Utilization," RAND Journal of Economics, The RAND Corporation, vol. 16(2), pages 215-236, Summer.
    25. Sorrell, Steve & Dimitropoulos, John & Sommerville, Matt, 2009. "Empirical estimates of the direct rebound effect: A review," Energy Policy, Elsevier, vol. 37(4), pages 1356-1371, April.
    26. Kent M. Hymel & Kenneth Small, 2014. "The Rebound Effect for Automobile Travel:Asymmetric Response to Price Changes and Novel Features of the 2000s," Working Papers 141503, University of California-Irvine, Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dimitropoulos, Alexandros & Oueslati, Walid & Sintek, Christina, 2018. "The rebound effect in road transport: A meta-analysis of empirical studies," Energy Economics, Elsevier, vol. 75(C), pages 163-179.
    2. Manuel Frondel & Colin Vance, 2018. "Drivers’ response to fuel taxes and efficiency standards: evidence from Germany," Transportation, Springer, vol. 45(3), pages 989-1001, May.
    3. Sylvain Weber & Mehdi Farsi, 2014. "Travel distance, fuel efficiency, and vehicle weight: An estimation of the rebound effect using individual data in Switzerland," IRENE Working Papers 14-03, IRENE Institute of Economic Research.
    4. Waldemar Marz, 2019. "Complex dimensions of climate policy: the role of political economy, capital markets, and urban form," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 85.
    5. Marz, Waldemar & Goetzke, Frank, 2022. "CAFE in the city — A spatial analysis of fuel economy standards," Journal of Environmental Economics and Management, Elsevier, vol. 115(C).
    6. Moshiri, Saeed & Aliyev, Kamil, 2017. "Rebound effect of efficiency improvement in passenger cars on gasoline consumption in Canada," Ecological Economics, Elsevier, vol. 131(C), pages 330-341.
    7. Lu-Yi Qiu & Ling-Yun He, 2017. "Are Chinese Green Transport Policies Effective? A New Perspective from Direct Pollution Rebound Effect, and Empirical Evidence From the Road Transport Sector," Sustainability, MDPI, vol. 9(3), pages 1-11, March.
    8. Banzhaf, H. Spencer & Kasim, M. Taha, 2019. "Fuel consumption and gasoline prices: The role of assortative matching between households and automobiles," Journal of Environmental Economics and Management, Elsevier, vol. 95(C), pages 1-25.
    9. Rivers, Nicholas & Schaufele, Brandon, 2017. "Gasoline price and new vehicle fuel efficiency: Evidence from Canada," Energy Economics, Elsevier, vol. 68(C), pages 454-465.
    10. Hediger, Cécile, 2023. "The more kilometers, the merrier? The rebound effect and its welfare implications in private mobility," Energy Policy, Elsevier, vol. 180(C).
    11. Tilov, Ivan & Weber, Sylvain, 2023. "Heterogeneity in price elasticity of vehicle kilometers traveled: Evidence from micro-level panel data," Energy Economics, Elsevier, vol. 127(PA).
    12. Joshua Linn, 2016. "The Rebound Effect for Passenger Vehicles," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    13. Ghoddusi, Hamed & Roy, Mandira, 2017. "Supply elasticity matters for the rebound effect and its impact on policy comparisons," Energy Economics, Elsevier, vol. 67(C), pages 111-120.
    14. Llorca, Manuel & Jamasb, Tooraj, 2017. "Energy efficiency and rebound effect in European road freight transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 101(C), pages 98-110.
    15. Greene, David L. & Sims, Charles B. & Muratori, Matteo, 2020. "Two trillion gallons: Fuel savings from fuel economy improvements to US light-duty vehicles, 1975–2018," Energy Policy, Elsevier, vol. 142(C).
    16. Lu-Yi Qiu & Ling-Yun He, 2016. "Are Chinese transport policies effective? A new perspective from direct pollution rebound effect, and empirical evidence from road transport sector," Papers 1612.02653, arXiv.org.
    17. Kenneth Gillingham & David Rapson & Gernot Wagner, 2016. "The Rebound Effect and Energy Efficiency Policy," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 10(1), pages 68-88.
    18. Benjamin Volland, 2016. "Efficiency in Domestic Space Heating: An Estimation of the Direct Rebound Effect for Domestic Heating in the U.S," IRENE Working Papers 16-01, IRENE Institute of Economic Research.
    19. Toroghi, Shahaboddin H. & Oliver, Matthew E., 2019. "Framework for estimation of the direct rebound effect for residential photovoltaic systems," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    20. Wang, Jiayu & Yu, Shuao & Liu, Tiansen, 2021. "A theoretical analysis of the direct rebound effect caused by energy efficiency improvement of private consumers," Economic Analysis and Policy, Elsevier, vol. 69(C), pages 171-181.

    More about this item

    Keywords

    The rebound effect; Fuel efficiency; First difference models;
    All these keywords.

    JEL classification:

    • Q5 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics
    • D1 - Microeconomics - - Household Behavior
    • R4 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics
    • C2 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jeeman:v:79:y:2016:i:c:p:1-17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/622870 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.