IDEAS home Printed from https://ideas.repec.org/a/eee/ecolec/v131y2017icp330-341.html
   My bibliography  Save this article

Rebound effect of efficiency improvement in passenger cars on gasoline consumption in Canada

Author

Listed:
  • Moshiri, Saeed
  • Aliyev, Kamil

Abstract

The fossil fuel-driven transport sector has been one of the major contributors to CO2 emission across the world keeping it on the energy policy agenda for the past three decades. Canada ranks second in gasoline consumption among OECD countries and Canadian gasoline expenditure share has been increasing since the 1990s. Fuel efficiency policies aim to decrease gasoline consumption; however, the effect can be mitigated by changes in consumer behavior such as traveling more distances — a rebound effect. Thus, the effectiveness of fuel efficiency policy is dependent on the magnitude of the rebound effect. In this paper, we estimate the rebound effect for personal transportation in Canada using data from the household spending survey for the period 1997–2009. The model includes a system of expenditure share equations for gasoline, other energy goods, and non-energy goods specified by AIDS and QUAIDS models and estimated by the nonlinear SUR method. Our estimation results show a rather high average rebound effect of 82–88% but with significant heterogeneity across income groups, provinces, and gasoline prices. Specifically, the rebound effect ranges from 63 to 96% across income groups and provinces and increases with gasoline prices.

Suggested Citation

  • Moshiri, Saeed & Aliyev, Kamil, 2017. "Rebound effect of efficiency improvement in passenger cars on gasoline consumption in Canada," Ecological Economics, Elsevier, vol. 131(C), pages 330-341.
  • Handle: RePEc:eee:ecolec:v:131:y:2017:i:c:p:330-341
    DOI: 10.1016/j.ecolecon.2016.09.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921800915303438
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolecon.2016.09.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Joshua Linn, 2016. "The Rebound Effect for Passenger Vehicles," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    2. Kenneth A. Small & Kurt Van Dender, 2007. "Fuel Efficiency and Motor Vehicle Travel: The Declining Rebound Effect," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 25-52.
    3. Daniel J. Graham & Stephen Glaister, 2002. "The Demand for Automobile Fuel: A Survey of Elasticities," Journal of Transport Economics and Policy, University of Bath, vol. 36(1), pages 1-25, January.
    4. David L. Greene & James R. Kahn & Robert C. Gibson, 1999. "Fuel Economy Rebound Effect for U.S. Household Vehicles," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 1-31.
    5. Manuel Frondel and Colin Vance, 2013. "Re-Identifying the Rebound: What About Asymmetry?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    6. Karen Turner, 2013. ""Rebound" Effects from Increased Energy Efficiency: A Time to Pause and Reflect," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    7. Brian P. Poi, 2012. "Easy demand-system estimation with quaids," Stata Journal, StataCorp LP, vol. 12(3), pages 433-446, September.
    8. Brannlund, Runar & Ghalwash, Tarek & Nordstrom, Jonas, 2007. "Increased energy efficiency and the rebound effect: Effects on consumption and emissions," Energy Economics, Elsevier, vol. 29(1), pages 1-17, January.
    9. Philippe Barla & Bernard Lamonde & Luis Miranda-Moreno & Nathalie Boucher, 2009. "Traveled distance, stock and fuel efficiency of private vehicles in Canada: price elasticities and rebound effect," Transportation, Springer, vol. 36(4), pages 389-402, July.
    10. Adonis Yatchew & Joungyeo Angela No, 2001. "Household Gasoline Demand in Canada," Econometrica, Econometric Society, vol. 69(6), pages 1697-1709, November.
    11. West, Sarah E., 2004. "Distributional effects of alternative vehicle pollution control policies," Journal of Public Economics, Elsevier, vol. 88(3-4), pages 735-757, March.
    12. Tingting Wang & Cynthia Chen, 2014. "Impact of fuel price on vehicle miles traveled (VMT): do the poor respond in the same way as the rich?," Transportation, Springer, vol. 41(1), pages 91-105, January.
    13. Su, Qing, 2011. "Induced motor vehicle travel from improved fuel efficiency and road expansion," Energy Policy, Elsevier, vol. 39(11), pages 7257-7264.
    14. Kurt Kratena & Michael Wüger, 2010. "The Full Impact of Energy Efficiency on Households' Energy Demand," WIFO Working Papers 356, WIFO.
    15. Sylvain Weber & Mehdi Farsi, 2014. "Travel distance, fuel efficiency, and vehicle weight: An estimation of the rebound effect using individual data in Switzerland," IRENE Working Papers 14-03, IRENE Institute of Economic Research.
    16. Matos, Fernando J.F. & Silva, Francisco J.F., 2011. "The rebound effect on road freight transport: Empirical evidence from Portugal," Energy Policy, Elsevier, vol. 39(5), pages 2833-2841, May.
    17. Nicol, C. J., 2003. "Elasticities of demand for gasoline in Canada and the United States," Energy Economics, Elsevier, vol. 25(2), pages 201-214, March.
    18. Hymel, Kent M. & Small, Kenneth A. & Dender, Kurt Van, 2010. "Induced demand and rebound effects in road transport," Transportation Research Part B: Methodological, Elsevier, vol. 44(10), pages 1220-1241, December.
    19. James Banks & Richard Blundell & Arthur Lewbel, 1997. "Quadratic Engel Curves And Consumer Demand," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 527-539, November.
    20. J. Daniel Khazzoom, 1980. "Economic Implications of Mandated Efficiency in Standards for Household Appliances," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 21-40.
    21. Clifton T Jones, 1993. "Another Look at U.S. Passenger Vehicle Use and the 'Rebound' Effect from Improved Fuel Efficiency," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 99-110.
    22. David L. Greene, 1992. "Vehicle Use and Fuel Economy: How Big is the "Rebound" Effect?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 117-144.
    23. Thomas Klier & Joshua Linn, 2012. "New‐vehicle characteristics and the cost of the Corporate Average Fuel Economy standard," RAND Journal of Economics, RAND Corporation, vol. 43(1), pages 186-213, March.
    24. Manuel Frondel & Jorg Peters & Colin Vance, 2008. "Identifying the Rebound: Evidence from a German Household Panel," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 145-164.
    25. Lewbel, Arthur, 1991. "The Rank of Demand Systems: Theory and Nonparametric Estimation," Econometrica, Econometric Society, vol. 59(3), pages 711-730, May.
    26. Chitnis, Mona & Sorrell, Steve & Druckman, Angela & Firth, Steven K. & Jackson, Tim, 2014. "Who rebounds most? Estimating direct and indirect rebound effects for different UK socioeconomic groups," Ecological Economics, Elsevier, vol. 106(C), pages 12-32.
    27. Sorrell, Steve & Dimitropoulos, John & Sommerville, Matt, 2009. "Empirical estimates of the direct rebound effect: A review," Energy Policy, Elsevier, vol. 37(4), pages 1356-1371, April.
    28. Jonathan Haughton & Soumodip Sarkar, 1996. "Gasoline Tax as a Corrective Tax: Estimates for the United States, 1970-1991," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 103-126.
    29. Orasch, Wolfgang & Wirl, Franz, 1997. "Technological efficiency and the demand for energy (road transport)," Energy Policy, Elsevier, vol. 25(14-15), pages 1129-1136, December.
    30. De Borger, Bruno & Mulalic, Ismir & Rouwendal, Jan, 2016. "Measuring the rebound effect with micro data: A first difference approach," Journal of Environmental Economics and Management, Elsevier, vol. 79(C), pages 1-17.
    31. Mannering, Fred L., 1986. "A note on endogenous variables in household vehicle utilization equations," Transportation Research Part B: Methodological, Elsevier, vol. 20(1), pages 1-6, February.
    32. Deaton, Angus S & Muellbauer, John, 1980. "An Almost Ideal Demand System," American Economic Review, American Economic Association, vol. 70(3), pages 312-326, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dimitropoulos, Alexandros & Oueslati, Walid & Sintek, Christina, 2018. "The rebound effect in road transport: A meta-analysis of empirical studies," Energy Economics, Elsevier, vol. 75(C), pages 163-179.
    2. Moshiri, Saeed, 2020. "Consumer responses to gasoline price and non-price policies," Energy Policy, Elsevier, vol. 137(C).
    3. Tilov, Ivan & Weber, Sylvain, 2023. "Heterogeneity in price elasticity of vehicle kilometers traveled: Evidence from micro-level panel data," Energy Economics, Elsevier, vol. 127(PA).
    4. Manuel Frondel & Colin Vance, 2018. "Drivers’ response to fuel taxes and efficiency standards: evidence from Germany," Transportation, Springer, vol. 45(3), pages 989-1001, May.
    5. Marz, Waldemar & Goetzke, Frank, 2022. "CAFE in the city — A spatial analysis of fuel economy standards," Journal of Environmental Economics and Management, Elsevier, vol. 115(C).
    6. Wang, Jiayu & Yu, Shuao & Liu, Tiansen, 2021. "A theoretical analysis of the direct rebound effect caused by energy efficiency improvement of private consumers," Economic Analysis and Policy, Elsevier, vol. 69(C), pages 171-181.
    7. Sorrell, Steve & Dimitropoulos, John & Sommerville, Matt, 2009. "Empirical estimates of the direct rebound effect: A review," Energy Policy, Elsevier, vol. 37(4), pages 1356-1371, April.
    8. Su, Qing, 2012. "A quantile regression analysis of the rebound effect: Evidence from the 2009 National Household Transportation Survey in the United States," Energy Policy, Elsevier, vol. 45(C), pages 368-377.
    9. Zhang, Yue-Jun & Peng, Hua-Rong & Liu, Zhao & Tan, Weiping, 2015. "Direct energy rebound effect for road passenger transport in China: A dynamic panel quantile regression approach," Energy Policy, Elsevier, vol. 87(C), pages 303-313.
    10. De Borger, Bruno & Mulalic, Ismir & Rouwendal, Jan, 2016. "Measuring the rebound effect with micro data: A first difference approach," Journal of Environmental Economics and Management, Elsevier, vol. 79(C), pages 1-17.
    11. Stapleton, Lee & Sorrell, Steve & Schwanen, Tim, 2016. "Estimating direct rebound effects for personal automotive travel in Great Britain," Energy Economics, Elsevier, vol. 54(C), pages 313-325.
    12. Llorca, Manuel & Jamasb, Tooraj, 2017. "Energy efficiency and rebound effect in European road freight transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 101(C), pages 98-110.
    13. Zhang, Yue-Jun & Liu, Zhao & Qin, Chang-Xiong & Tan, Tai-De, 2017. "The direct and indirect CO2 rebound effect for private cars in China," Energy Policy, Elsevier, vol. 100(C), pages 149-161.
    14. Wang, H. & Zhou, P. & Zhou, D.Q., 2012. "An empirical study of direct rebound effect for passenger transport in urban China," Energy Economics, Elsevier, vol. 34(2), pages 452-460.
    15. Ghoddusi, Hamed & Roy, Mandira, 2017. "Supply elasticity matters for the rebound effect and its impact on policy comparisons," Energy Economics, Elsevier, vol. 67(C), pages 111-120.
    16. Wadud, Zia & Graham, Daniel J. & Noland, Robert B., 2009. "Modelling fuel demand for different socio-economic groups," Applied Energy, Elsevier, vol. 86(12), pages 2740-2749, December.
    17. Sun, Shanxia & Delgado, Michael S. & Khanna, Neha, 2019. "Hybrid vehicles, social signals and household driving: Implications for miles traveled and gasoline consumption," Energy Economics, Elsevier, vol. 84(C).
    18. Sun, Shanxia & Delgado, Michael & Khanna, Neha, 2017. "Hybrid Vehicles and Household Driving Behavior: Implications for Miles Traveled and Gasoline Consumption," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258502, Agricultural and Applied Economics Association.
    19. Wang, H. & Zhou, D.Q. & Zhou, P. & Zha, D.L., 2012. "Direct rebound effect for passenger transport: Empirical evidence from Hong Kong," Applied Energy, Elsevier, vol. 92(C), pages 162-167.
    20. Thomas, Brinda A. & Azevedo, Inês L., 2013. "Estimating direct and indirect rebound effects for U.S. households with input–output analysis Part 1: Theoretical framework," Ecological Economics, Elsevier, vol. 86(C), pages 199-210.

    More about this item

    Keywords

    Gasoline; Demand; AIDS; QUAIDS; Rebound effect; Canada;
    All these keywords.

    JEL classification:

    • D1 - Microeconomics - - Household Behavior
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:131:y:2017:i:c:p:330-341. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolecon .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.