IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v63y2013icp189-194.html
   My bibliography  Save this article

A non-parametric Data Envelopment Analysis approach for improving energy efficiency of grape production

Author

Listed:
  • Khoshroo, Alireza
  • Mulwa, Richard
  • Emrouznejad, Ali
  • Arabi, Behrouz

Abstract

Grape is one of the world's largest fruit crops with approximately 67.5 million tonnes produced each year and energy is an important element in modern grape productions as it heavily depends on fossil and other energy resources. Efficient use of these energies is a necessary step toward reducing environmental hazards, preventing destruction of natural resources and ensuring agricultural sustainability. Hence, identifying excessive use of energy as well as reducing energy resources is the main focus of this paper to optimize energy consumption in grape production.

Suggested Citation

  • Khoshroo, Alireza & Mulwa, Richard & Emrouznejad, Ali & Arabi, Behrouz, 2013. "A non-parametric Data Envelopment Analysis approach for improving energy efficiency of grape production," Energy, Elsevier, vol. 63(C), pages 189-194.
  • Handle: RePEc:eee:energy:v:63:y:2013:i:c:p:189-194
    DOI: 10.1016/j.energy.2013.09.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421300772X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.09.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nassiri, Seyed Mehdi & Singh, Surendra, 2009. "Study on energy use efficiency for paddy crop using data envelopment analysis (DEA) technique," Applied Energy, Elsevier, vol. 86(7-8), pages 1320-1325, July.
    2. William W. Cooper & Lawrence M. Seiford & Joe Zhu (ed.), 2011. "Handbook on Data Envelopment Analysis," International Series in Operations Research and Management Science, Springer, number 978-1-4419-6151-8, December.
    3. Beheshti Tabar, Iman & Keyhani, Alireza & Rafiee, Shaheen, 2010. "Energy balance in Iran's agronomy (1990-2006)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 849-855, February.
    4. Dhungana, Basanta R. & Nuthall, Peter L. & Nartea, Gilbert V., 2004. "Measuring the economic inefficiency of Nepalese rice farms using data envelopment analysis," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 48(2), pages 1-23.
    5. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    6. Houshyar, Ehsan & Azadi, Hossein & Almassi, Morteza & Sheikh Davoodi, Mohammad Javad & Witlox, Frank, 2012. "Sustainable and efficient energy consumption of corn production in Southwest Iran: Combination of multi-fuzzy and DEA modeling," Energy, Elsevier, vol. 44(1), pages 672-681.
    7. Richard Mulwa & Ali Emrouznejad & Lutta Muhammad, 2009. "Economic Efficiency of smallholder maize producers in Western Kenya: a DEA meta-frontier analysis," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 4(3), pages 250-267.
    8. Wang, Chunhua, 2007. "Decomposing energy productivity change: A distance function approach," Energy, Elsevier, vol. 32(8), pages 1326-1333.
    9. Bozoğlu, Mehmet & Ceyhan, Vedat, 2009. "Energy conversion efficiency of trout and sea bass production in the Black Sea, Turkey," Energy, Elsevier, vol. 34(2), pages 199-204.
    10. Canakci, M. & Akinci, I., 2006. "Energy use pattern analyses of greenhouse vegetable production," Energy, Elsevier, vol. 31(8), pages 1243-1256.
    11. Emrouznejad, Ali & Parker, Barnett R. & Tavares, Gabriel, 2008. "Evaluation of research in efficiency and productivity: A survey and analysis of the first 30 years of scholarly literature in DEA," Socio-Economic Planning Sciences, Elsevier, vol. 42(3), pages 151-157, September.
    12. Zhou, Nan & Levine, Mark D. & Price, Lynn, 2010. "Overview of current energy-efficiency policies in China," Energy Policy, Elsevier, vol. 38(11), pages 6439-6452, November.
    13. Rafiee, Shahin & Mousavi Avval, Seyed Hashem & Mohammadi, Ali, 2010. "Modeling and sensitivity analysis of energy inputs for apple production in Iran," Energy, Elsevier, vol. 35(8), pages 3301-3306.
    14. Mousavi-Avval, Seyed Hashem & Rafiee, Shahin & Mohammadi, Ali, 2011. "Optimization of energy consumption and input costs for apple production in Iran using data envelopment analysis," Energy, Elsevier, vol. 36(2), pages 909-916.
    15. Erdal, Gülistan & Esengün, Kemal & Erdal, Hilmi & Gündüz, Orhan, 2007. "Energy use and economical analysis of sugar beet production in Tokat province of Turkey," Energy, Elsevier, vol. 32(1), pages 35-41.
    16. Ramedani, Z. & Rafiee, S. & Heidari, M.D., 2011. "An investigation on energy consumption and sensitivity analysis of soybean production farms," Energy, Elsevier, vol. 36(11), pages 6340-6344.
    17. Lee, Wen-Shing, 2010. "Benchmarking the energy performance for cooling purposes in buildings using a novel index-total performance of energy for cooling purposes," Energy, Elsevier, vol. 35(1), pages 50-54.
    18. Pahlavan, Reza & Omid, Mahmoud & Akram, Asadollah, 2011. "Energy use efficiency in greenhouse tomato production in Iran," Energy, Elsevier, vol. 36(12), pages 6714-6719.
    19. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    20. Spiro E. Stefanou & Swati Saxena, 1988. "Education, Experience, and Allocative Efficiency: A Dual Approach," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 70(2), pages 338-345.
    21. M.R. Mulwa & A. Emrouznejad & F.M. Murithi, 2009. "Impact of liberalization on efficiency and productivity of sugar industry in Kenya," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 36(3), pages 250-264, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Behrouz Arabi & Susila Munisamy Doraisamy & Ali Emrouznejad & Alireza Khoshroo, 2017. "Eco-efficiency measurement and material balance principle: an application in power plants Malmquist Luenberger Index," Annals of Operations Research, Springer, vol. 255(1), pages 221-239, August.
    2. Aldieri, Luigi & Gatto, Andrea & Vinci, Concetto Paolo, 2021. "Evaluation of energy resilience and adaptation policies: An energy efficiency analysis," Energy Policy, Elsevier, vol. 157(C).
    3. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    4. Muhammad N. Ashraf & Muhammad H. Mahmood & Muhammad Sultan & Narges Banaeian & Muhammad Usman & Sobhy M. Ibrahim & Muhammad U. B. U. Butt & Muhammad Waseem & Imran Ali & Aamir Shakoor & Zahid M. Khan, 2020. "Investigation of Input and Output Energy for Wheat Production: A Comprehensive Study for Tehsil Mailsi (Pakistan)," Sustainability, MDPI, vol. 12(17), pages 1-22, August.
    5. Dong Tian & Min Zhang & Xuejian Wei & Jing Wang & Weisong Mu & Jianying Feng, 2018. "GIS-Based Energy Consumption and Spatial Variation of Protected Grape Cultivation in China," Sustainability, MDPI, vol. 10(9), pages 1-21, September.
    6. Zhihai Yang & Dong Wang & Tianyi Du & Anlu Zhang & Yixiao Zhou, 2018. "Total-Factor Energy Efficiency in China’s Agricultural Sector: Trends, Disparities and Potentials," Energies, MDPI, vol. 11(4), pages 1-16, April.
    7. Mardani, Aref & Taghavifar, Hamid, 2016. "An overview on energy inputs and environmental emissions of grape production in West Azerbayjan of Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 918-924.
    8. Vlontzos, G. & Pardalos, P.M., 2017. "Assess and prognosticate green house gas emissions from agricultural production of EU countries, by implementing, DEA Window analysis and artificial neural networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 155-162.
    9. Jara Laso & Daniel Hoehn & María Margallo & Isabel García-Herrero & Laura Batlle-Bayer & Alba Bala & Pere Fullana-i-Palmer & Ian Vázquez-Rowe & Angel Irabien & Rubén Aldaco, 2018. "Assessing Energy and Environmental Efficiency of the Spanish Agri-Food System Using the LCA/DEA Methodology," Energies, MDPI, vol. 11(12), pages 1-18, December.
    10. Lin, Boqiang & Wang, Ailun, 2015. "Estimating energy conservation potential in China's commercial sector," Energy, Elsevier, vol. 82(C), pages 147-156.
    11. Elhami, Behzad & Ghasemi Nejad Raini, Mahmoud & Soheili-Fard, Farshad, 2019. "Energy and environmental indices through life cycle assessment of raisin production: A case study (Kohgiluyeh and Boyer-Ahmad Province, Iran)," Renewable Energy, Elsevier, vol. 141(C), pages 507-515.
    12. Aravindakshan, Sreejith & Rossi, Frederick J. & Krupnik, Timothy J., 2015. "What does benchmarking of wheat farmers practicing conservation tillage in the eastern Indo-Gangetic Plains tell us about energy use efficiency? An application of slack-based data envelopment analysis," Energy, Elsevier, vol. 90(P1), pages 483-493.
    13. Elahi, Ehsan & Zhang, Zhixin & Khalid, Zainab & Xu, Haiyun, 2022. "Application of an artificial neural network to optimise energy inputs: An energy- and cost-saving strategy for commercial poultry farms," Energy, Elsevier, vol. 244(PB).
    14. Tian, Dong & Zhang, Min & Xiong, Chuqiao & Mu, Weisong & Feng, Jianying, 2019. "Measuring the energy consumption and energy efficiency in two-harvest-a-year grape cultivation," Energy, Elsevier, vol. 189(C).
    15. Spyros Niavis & Nikos Tamvakis & Basil Manos & George Vlontzos, 2018. "Assessing and Explaining the Efficiency of Extensive Olive Oil Farmers: The Case of Pelion Peninsula in Greece," Agriculture, MDPI, vol. 8(2), pages 1-13, February.
    16. Arabi, Behrouz & Munisamy, Susila & Emrouznejad, Ali & Toloo, Mehdi & Ghazizadeh, Mohammad Sadegh, 2016. "Eco-efficiency considering the issue of heterogeneity among power plants," Energy, Elsevier, vol. 111(C), pages 722-735.
    17. Jaeho Shin & Changhee Kim & Hongsuk Yang, 2019. "Does Reduction of Material and Energy Consumption Affect to Innovation Efficiency? The Case of Manufacturing Industry in South Korea," Energies, MDPI, vol. 12(6), pages 1-14, March.
    18. Anirban Nandy & Piyush Kumar Singh & Alok Kumar Singh, 2021. "Systematic Review and Meta- regression Analysis of Technical Efficiency of Agricultural Production Systems," Global Business Review, International Management Institute, vol. 22(2), pages 396-421, April.
    19. Khoshroo, Alireza & Izadikhah, Mohammad & Emrouznejad, Ali, 2022. "Total factor energy productivity considering undesirable pollutant outputs: A new double frontier based malmquist productivity index," Energy, Elsevier, vol. 258(C).
    20. Rabiatul Munirah Alpandi & Fakarudin Kamarudin & Peter Wanke & Muhammad Syafiq Muhammad Salam & Hafezali Iqbal Hussain, 2022. "Energy Efficiency in Production of Swiftlet Edible Bird’s Nest," Sustainability, MDPI, vol. 14(10), pages 1-14, May.
    21. Muhammad N. Ashraf & Muhammad H. Mahmood & Muhammad Sultan & Redmond R. Shamshiri & Sobhy M. Ibrahim, 2021. "Investigation of Energy Consumption and Associated CO 2 Emissions for Wheat–Rice Crop Rotation Farming," Energies, MDPI, vol. 14(16), pages 1-18, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mousavi-Avval, Seyed Hashem & Rafiee, Shahin & Jafari, Ali & Mohammadi, Ali, 2011. "Improving energy use efficiency of canola production using data envelopment analysis (DEA) approach," Energy, Elsevier, vol. 36(5), pages 2765-2772.
    2. Mousavi-Avval, Seyed Hashem & Rafiee, Shahin & Jafari, Ali & Mohammadi, Ali, 2011. "Optimization of energy consumption for soybean production using Data Envelopment Analysis (DEA) approach," Applied Energy, Elsevier, vol. 88(11), pages 3765-3772.
    3. Anirban Nandy & Piyush Kumar Singh & Alok Kumar Singh, 2021. "Systematic Review and Meta- regression Analysis of Technical Efficiency of Agricultural Production Systems," Global Business Review, International Management Institute, vol. 22(2), pages 396-421, April.
    4. Mousavi-Avval, Seyed Hashem & Rafiee, Shahin & Mohammadi, Ali, 2011. "Optimization of energy consumption and input costs for apple production in Iran using data envelopment analysis," Energy, Elsevier, vol. 36(2), pages 909-916.
    5. Banaeian, Narges & Zangeneh, Morteza, 2011. "Study on energy efficiency in corn production of Iran," Energy, Elsevier, vol. 36(8), pages 5394-5402.
    6. Zhou, Guanghui & Chung, William & Zhang, Xiliang, 2013. "A study of carbon dioxide emissions performance of China's transport sector," Energy, Elsevier, vol. 50(C), pages 302-314.
    7. Khoshnevisan, Benyamin & Rafiee, Shahin & Omid, Mahmoud & Mousazadeh, Hossein, 2013. "Reduction of CO2 emission by improving energy use efficiency of greenhouse cucumber production using DEA approach," Energy, Elsevier, vol. 55(C), pages 676-682.
    8. Mohammadi, Ali & Rafiee, Shahin & Mohtasebi, Seyed Saeid & Mousavi Avval, Seyed Hashem & Rafiee, Hamed, 2011. "Energy efficiency improvement and input cost saving in kiwifruit production using Data Envelopment Analysis approach," Renewable Energy, Elsevier, vol. 36(9), pages 2573-2579.
    9. Houshyar, Ehsan & Azadi, Hossein & Almassi, Morteza & Sheikh Davoodi, Mohammad Javad & Witlox, Frank, 2012. "Sustainable and efficient energy consumption of corn production in Southwest Iran: Combination of multi-fuzzy and DEA modeling," Energy, Elsevier, vol. 44(1), pages 672-681.
    10. Sara Ilahi & Yongchang Wu & Muhammad Ahsan Ali Raza & Wenshan Wei & Muhammad Imran & Lyankhua Bayasgalankhuu, 2019. "Optimization Approach for Improving Energy Efficiency and Evaluation of Greenhouse Gas Emission of Wheat Crop using Data Envelopment Analysis," Sustainability, MDPI, vol. 11(12), pages 1-16, June.
    11. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min & Lin, Bruce J.Y., 2013. "A survey of DEA applications," Omega, Elsevier, vol. 41(5), pages 893-902.
    12. Tian, Dong & Zhang, Min & Xiong, Chuqiao & Mu, Weisong & Feng, Jianying, 2019. "Measuring the energy consumption and energy efficiency in two-harvest-a-year grape cultivation," Energy, Elsevier, vol. 189(C).
    13. Khoshnevisan, Benyamin & Rafiee, Shahin & Omid, Mahmoud & Mousazadeh, Hossein, 2013. "Applying data envelopment analysis approach to improve energy efficiency and reduce GHG (greenhouse gas) emission of wheat production," Energy, Elsevier, vol. 58(C), pages 588-593.
    14. Elsoragaby, Suha & Yahya, Azmi & Mahadi, Muhammad Razif & Nawi, Nazmi Mat & Mairghany, Modather, 2019. "Energy utilization in major crop cultivation," Energy, Elsevier, vol. 173(C), pages 1285-1303.
    15. Zeng, Shihong & Jiang, Chunxia & Ma, Chen & Su, Bin, 2018. "Investment efficiency of the new energy industry in China," Energy Economics, Elsevier, vol. 70(C), pages 536-544.
    16. Khoshnevisan, Benyamin & Shariati, Hanifreza Motamed & Rafiee, Shahin & Mousazadeh, Hossein, 2014. "Comparison of energy consumption and GHG emissions of open field and greenhouse strawberry production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 316-324.
    17. Kazemi, Hossein & Bourkheili, Saeid Hassanpour & Kamkar, Behnam & Soltani, Afshin & Gharanjic, Kambiz & Nazari, Noor Mohammad, 2016. "Estimation of greenhouse gas (GHG) emission and energy use efficiency (EUE) analysis in rainfed canola production (case study: Golestan province, Iran)," Energy, Elsevier, vol. 116(P1), pages 694-700.
    18. Asgharipour, Mohammad Reza & Mondani, Farzad & Riahinia, Shahram, 2012. "Energy use efficiency and economic analysis of sugar beet production system in Iran: A case study in Khorasan Razavi province," Energy, Elsevier, vol. 44(1), pages 1078-1084.
    19. Spyros Niavis & Nikos Tamvakis & Basil Manos & George Vlontzos, 2018. "Assessing and Explaining the Efficiency of Extensive Olive Oil Farmers: The Case of Pelion Peninsula in Greece," Agriculture, MDPI, vol. 8(2), pages 1-13, February.
    20. Tabatabaie, Seyed Mohammad Hossein & Rafiee, Shahin & Keyhani, Alireza, 2012. "Energy consumption flow and econometric models of two plum cultivars productions in Tehran province of Iran," Energy, Elsevier, vol. 44(1), pages 211-216.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:63:y:2013:i:c:p:189-194. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.