IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v8y2018i2p25-d131679.html
   My bibliography  Save this article

Assessing and Explaining the Efficiency of Extensive Olive Oil Farmers: The Case of Pelion Peninsula in Greece

Author

Listed:
  • Spyros Niavis

    (Department of Planning and Regional Development, University of Thessaly, Pedion Areos, 38333 Volos, Greece)

  • Nikos Tamvakis

    (Department of Agriculture, Crop Production and Rural Development, University of Thessaly, 38446 Volos, Greece)

  • Basil Manos

    (Department of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece)

  • George Vlontzos

    (Department of Agriculture, Crop Production and Rural Development, University of Thessaly, 38446 Volos, Greece)

Abstract

The production of olives and olive oil in the Mediterranean region is one of the most important cultivations. The continuous changes imposed by the European Common Agricultural Policy (CAP) towards strengthening the influence of market forces have increased the necessity for the assessment of the efficiency of production protocols or patterns being implemented by the farmers. As regards olive trees cultivation, the efficiency of inputs utilization has not been studied in depth, despite the fact that this is a critical issue for both farmers and consumers. This study evaluates the efficiency rates of 100 Greek agricultural holdings specialized on olive trees cultivation by implementing a Data Envelopment Analysis (DEA) input oriented model. The inputs being used are land, fertilizers, agrochemicals, labour, and energy. The output being used is the revenue of each holding. The results quantify the significant variations of efficiency scores, providing evidence that there is space for restructuring the production process, in order to improve efficiency and thus decrease the production cost of inefficient farmers.

Suggested Citation

  • Spyros Niavis & Nikos Tamvakis & Basil Manos & George Vlontzos, 2018. "Assessing and Explaining the Efficiency of Extensive Olive Oil Farmers: The Case of Pelion Peninsula in Greece," Agriculture, MDPI, vol. 8(2), pages 1-13, February.
  • Handle: RePEc:gam:jagris:v:8:y:2018:i:2:p:25-:d:131679
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/8/2/25/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/8/2/25/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Picazo-Tadeo, Andrés J. & Beltrán-Esteve, Mercedes & Gómez-Limón, José A., 2012. "Assessing eco-efficiency with directional distance functions," European Journal of Operational Research, Elsevier, vol. 220(3), pages 798-809.
    2. Smith, Peter & Mayston, David, 1987. "Measuring efficiency in the public sector," Omega, Elsevier, vol. 15(3), pages 181-189.
    3. Amores, Antonio F. & Contreras, Ignacio, 2009. "New approach for the assignment of new European agricultural subsidies using scores from data envelopment analysis: Application to olive-growing farms in Andalusia (Spain)," European Journal of Operational Research, Elsevier, vol. 193(3), pages 718-729, March.
    4. Boussofiane, A. & Dyson, R. G. & Thanassoulis, E., 1991. "Applied data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 52(1), pages 1-15, May.
    5. Hansson, Helena, 2007. "Strategy factors as drivers and restraints on dairy farm performance: Evidence from Sweden," Agricultural Systems, Elsevier, vol. 94(3), pages 726-737, June.
    6. Arabi, Behrouz & Munisamy, Susila & Emrouznejad, Ali & Shadman, Foroogh, 2014. "Power industry restructuring and eco-efficiency changes: A new slacks-based model in Malmquist–Luenberger Index measurement," Energy Policy, Elsevier, vol. 68(C), pages 132-145.
    7. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    8. Richard Mulwa & Ali Emrouznejad & Lutta Muhammad, 2009. "Economic Efficiency of smallholder maize producers in Western Kenya: a DEA meta-frontier analysis," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 4(3), pages 250-267.
    9. Khoshnevisan, Benyamin & Rafiee, Shahin & Omid, Mahmoud & Yousefi, Marziye & Movahedi, Mehran, 2013. "Modeling of energy consumption and GHG (greenhouse gas) emissions in wheat production in Esfahan province of Iran using artificial neural networks," Energy, Elsevier, vol. 52(C), pages 333-338.
    10. Lozano, S. & Villa, G. & Brännlund, R., 2009. "Centralised reallocation of emission permits using DEA," European Journal of Operational Research, Elsevier, vol. 193(3), pages 752-760, March.
    11. Cook, Wade D. & Seiford, Larry M., 2009. "Data envelopment analysis (DEA) - Thirty years on," European Journal of Operational Research, Elsevier, vol. 192(1), pages 1-17, January.
    12. Timo Kuosmanen & Mika Kortelainen, 2005. "Measuring Eco‐efficiency of Production with Data Envelopment Analysis," Journal of Industrial Ecology, Yale University, vol. 9(4), pages 59-72, October.
    13. Mustafa Dinc & Kingsley E. Haynes, 1999. "Sources of regional inefficiency An integrated shift-share, data envelopment analysis and input-output approach," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 33(4), pages 469-489.
    14. Cullinane, Kevin & Wang, Teng-Fei & Song, Dong-Wook & Ji, Ping, 2006. "The technical efficiency of container ports: Comparing data envelopment analysis and stochastic frontier analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(4), pages 354-374, May.
    15. Battese, G E & Coelli, T J, 1995. "A Model for Technical Inefficiency Effects in a Stochastic Frontier Production Function for Panel Data," Empirical Economics, Springer, vol. 20(2), pages 325-332.
    16. Emrouznejad, Ali & Parker, Barnett R. & Tavares, Gabriel, 2008. "Evaluation of research in efficiency and productivity: A survey and analysis of the first 30 years of scholarly literature in DEA," Socio-Economic Planning Sciences, Elsevier, vol. 42(3), pages 151-157, September.
    17. Vennesland, Birger, 2005. "Measuring rural economic development in Norway using data envelopment analysis," Forest Policy and Economics, Elsevier, vol. 7(1), pages 109-119, January.
    18. Song, Malin & An, Qingxian & Zhang, Wei & Wang, Zeya & Wu, Jie, 2012. "Environmental efficiency evaluation based on data envelopment analysis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4465-4469.
    19. Heidari, M.D. & Omid, M., 2011. "Energy use patterns and econometric models of major greenhouse vegetable productions in Iran," Energy, Elsevier, vol. 36(1), pages 220-225.
    20. Khoshnevisan, Benyamin & Rafiee, Shahin & Omid, Mahmoud & Mousazadeh, Hossein, 2013. "Reduction of CO2 emission by improving energy use efficiency of greenhouse cucumber production using DEA approach," Energy, Elsevier, vol. 55(C), pages 676-682.
    21. Khoshnevisan, Benyamin & Rafiee, Shahin & Omid, Mahmoud & Mousazadeh, Hossein, 2013. "Applying data envelopment analysis approach to improve energy efficiency and reduce GHG (greenhouse gas) emission of wheat production," Energy, Elsevier, vol. 58(C), pages 588-593.
    22. Sözen, Adnan & Alp, Ihsan & Özdemir, Adnan, 2010. "Assessment of operational and environmental performance of the thermal power plants in Turkey by using data envelopment analysis," Energy Policy, Elsevier, vol. 38(10), pages 6194-6203, October.
    23. Elvira Silva & Spiro Stefanou, 2003. "Nonparametric Dynamic Production Analysis and the Theory of Cost," Journal of Productivity Analysis, Springer, vol. 19(1), pages 5-32, January.
    24. George Vlontzos & Garyfallos Arabatzis & Basil Manos, 2014. "Investigation of the relative efficiency of LEADER+ in rural areas of Northern Greece," International Journal of Green Economics, Inderscience Enterprises Ltd, vol. 8(1), pages 37-48.
    25. Khoshroo, Alireza & Mulwa, Richard & Emrouznejad, Ali & Arabi, Behrouz, 2013. "A non-parametric Data Envelopment Analysis approach for improving energy efficiency of grape production," Energy, Elsevier, vol. 63(C), pages 189-194.
    26. Simar, Leopold & Wilson, Paul W., 2007. "Estimation and inference in two-stage, semi-parametric models of production processes," Journal of Econometrics, Elsevier, vol. 136(1), pages 31-64, January.
    27. Khem Sharma & Pingsun Leung & Halina Zaleski, 1997. "Productive Efficiency of the Swine Industry in Hawaii: Stochastic Frontier vs. Data Envelopment Analysis," Journal of Productivity Analysis, Springer, vol. 8(4), pages 447-459, November.
    28. Vlontzos, G. & Pardalos, P.M., 2017. "Assess and prognosticate green house gas emissions from agricultural production of EU countries, by implementing, DEA Window analysis and artificial neural networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 155-162.
    29. Emmanuel Thanassoulis, 1999. "Data Envelopment Analysis and Its Use in Banking," Interfaces, INFORMS, vol. 29(3), pages 1-13, June.
    30. Reig-Martinez, Ernest & Picazo-Tadeo, Andres J., 2004. "Analysing farming systems with Data Envelopment Analysis: citrus farming in Spain," Agricultural Systems, Elsevier, vol. 82(1), pages 17-30, October.
    31. Karkazis, John & Thanassoulis, Emmanuel, 1998. "Assessing the effectiveness of regional development policies in Northern Greece using data envelopment analysis," Socio-Economic Planning Sciences, Elsevier, vol. 32(2), pages 123-137, June.
    32. G. Vlontzos & S. Niavis, 2014. "Assessing the Evolution of Technical Efficiency of Agriculture in EU Countries: Is There a Role for the Agenda 2000?," Cooperative Management, in: Constantin Zopounidis & Nikos Kalogeras & Konstadinos Mattas & Gert Dijk & George Baourakis (ed.), Agricultural Cooperative Management and Policy, edition 127, chapter 0, pages 339-351, Springer.
    33. Pahlavan, Reza & Omid, Mahmoud & Akram, Asadollah, 2011. "Energy use efficiency in greenhouse tomato production in Iran," Energy, Elsevier, vol. 36(12), pages 6714-6719.
    34. Kristof Witte & Rui Marques, 2010. "Influential observations in frontier models, a robust non-oriented approach to the water sector," Annals of Operations Research, Springer, vol. 181(1), pages 377-392, December.
    35. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rafael E. Hidalgo Fernández & Pilar Carranza-Cañadas & Francisco J. García-Salcedo & Paula Triviño-Tarradas, 2020. "Parameterisation and Optimisation of a Hand-Rake Sweeper: Application in Olive Picking," Agriculture, MDPI, vol. 10(9), pages 1-18, August.
    2. Kenichi Kashiwagi & Hajime Kamiyama, 2023. "Effect of adoption of organic farming on technical efficiency of olive-growing farms: empirical evidence from West Bank of Palestine," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 11(1), pages 1-28, December.
    3. Dimitrios Iakovidis & Yiorgos Gadanakis & Julian Park, 2023. "Farmer and Adviser Perspectives on Business Planning and Control in Mediterranean Agriculture: Evidence from Argolida, Greece," Agriculture, MDPI, vol. 13(2), pages 1-20, February.
    4. José Ignacio Rojas-Sola & Eduardo De la Morena-De la Fuente, 2020. "The Conical Stones Olive Oil Mill: Analysis through Computer-Aided Engineering," Agriculture, MDPI, vol. 10(7), pages 1-24, July.
    5. José Ignacio Rojas-Sola & Eduardo De la Morena-De la Fuente & Manuel Jesús Hermoso-Orzáez & David Hernández-Díaz, 2020. "The Tower Press for Obtaining Olive Oil: Analysis through Computer-Aided Engineering," Agriculture, MDPI, vol. 10(11), pages 1-25, November.
    6. Thomas Bournaris & George Vlontzos & Christina Moulogianni, 2019. "Efficiency of Vegetables Produced in Glasshouses: The Impact of Data Envelopment Analysis (DEA) in Land Management Decision Making," Land, MDPI, vol. 8(1), pages 1-11, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vlontzos, G. & Pardalos, P.M., 2017. "Assess and prognosticate green house gas emissions from agricultural production of EU countries, by implementing, DEA Window analysis and artificial neural networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 155-162.
    2. Thomas Bournaris & George Vlontzos & Christina Moulogianni, 2019. "Efficiency of Vegetables Produced in Glasshouses: The Impact of Data Envelopment Analysis (DEA) in Land Management Decision Making," Land, MDPI, vol. 8(1), pages 1-11, January.
    3. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min & Lin, Bruce J.Y., 2013. "A survey of DEA applications," Omega, Elsevier, vol. 41(5), pages 893-902.
    4. Abbas Mardani & Dalia Streimikiene & Tomas Balezentis & Muhamad Zameri Mat Saman & Khalil Md Nor & Seyed Meysam Khoshnava, 2018. "Data Envelopment Analysis in Energy and Environmental Economics: An Overview of the State-of-the-Art and Recent Development Trends," Energies, MDPI, vol. 11(8), pages 1-21, August.
    5. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    6. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Jusoh, Ahmad & Khoshnoudi, Masoumeh, 2017. "A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1298-1322.
    7. Tian, Dong & Zhang, Min & Xiong, Chuqiao & Mu, Weisong & Feng, Jianying, 2019. "Measuring the energy consumption and energy efficiency in two-harvest-a-year grape cultivation," Energy, Elsevier, vol. 189(C).
    8. Picazo-Tadeo, Andrés J. & Beltrán-Esteve, Mercedes & Gómez-Limón, José A., 2012. "Assessing eco-efficiency with directional distance functions," European Journal of Operational Research, Elsevier, vol. 220(3), pages 798-809.
    9. Mai, Nhat Chi, 2015. "Efficiency of the banking system in Vietnam under financial liberalization," OSF Preprints qsf6d, Center for Open Science.
    10. Khalili-Damghani, Kaveh & Tavana, Madjid & Santos-Arteaga, Francisco J. & Mohtasham, Sima, 2015. "A dynamic multi-stage data envelopment analysis model with application to energy consumption in the cotton industry," Energy Economics, Elsevier, vol. 51(C), pages 320-328.
    11. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min, 2016. "Research fronts in data envelopment analysis," Omega, Elsevier, vol. 58(C), pages 33-45.
    12. Valentin Zelenyuk, 2019. "Data Envelopment Analysis and Business Analytics: The Big Data Challenges and Some Solutions," CEPA Working Papers Series WP072019, School of Economics, University of Queensland, Australia.
    13. Anirban Nandy & Piyush Kumar Singh & Alok Kumar Singh, 2021. "Systematic Review and Meta- regression Analysis of Technical Efficiency of Agricultural Production Systems," Global Business Review, International Management Institute, vol. 22(2), pages 396-421, April.
    14. Jesús Peiró-Palomino & Andrés J. Picazo-Tadeo, 2019. "Is Social Capital Green? Cultural Features and Environmental Performance in the European Union," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(3), pages 795-822, March.
    15. Lampe, Hannes W. & Hilgers, Dennis, 2015. "Trajectories of efficiency measurement: A bibliometric analysis of DEA and SFA," European Journal of Operational Research, Elsevier, vol. 240(1), pages 1-21.
    16. Lucio Cecchini & Francesco Romagnoli & Massimo Chiorri & Biancamaria Torquati, 2023. "Eco-Efficiency and Its Determinants: The Case of the Italian Beef Cattle Sector," Agriculture, MDPI, vol. 13(5), pages 1-18, May.
    17. Behrouz Arabi & Susila Munisamy Doraisamy & Ali Emrouznejad & Alireza Khoshroo, 2017. "Eco-efficiency measurement and material balance principle: an application in power plants Malmquist Luenberger Index," Annals of Operations Research, Springer, vol. 255(1), pages 221-239, August.
    18. Pritpal Singh & Gurdeep Singh & G. P. S. Sodhi, 2022. "Data envelopment analysis based optimization for improving net ecosystem carbon and energy budget in cotton (Gossypium hirsutum L.) cultivation: methods and a case study of north-western India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 2079-2119, February.
    19. Joanna Domagała, 2021. "Economic and Environmental Aspects of Agriculture in the EU Countries," Energies, MDPI, vol. 14(22), pages 1-23, November.
    20. Salas-Velasco, Manuel, 2018. "Production efficiency measurement and its determinants across OECD countries: The role of business sophistication and innovation," Economic Analysis and Policy, Elsevier, vol. 57(C), pages 60-73.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:8:y:2018:i:2:p:25-:d:131679. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.