IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v178y2019icp685-694.html
   My bibliography  Save this article

The static and dynamic heterogeneity and determinants of marginal abatement cost of CO2 emissions in Chinese cities

Author

Listed:
  • Wu, Jianxin
  • Ma, Chunbo
  • Tang, Kai

Abstract

Using a newly constructed panel dataset of 286 Chinese cities for 2002–2013, we examine the static and dynamic distribution and determinants of marginal abatement cost (MAC) of CO2. We find that: 1) there has been a steady increase of the estimated mean MAC for CO2 emissions over the studied period; 2) there is substantial heterogeneity in the estimated MAC across regions with eastern cities having the highest MAC and northeastern cities having the lowest; 3) the distribution dynamics analysis shows that there is no clear tendency of convergence in the steady state distribution of MAC in the long term. The findings provide strong support for a market-based policy instrument for CO2 mitigation in China. Our regression model also reveals a U-shaped relationship between MAC and CO2 emission intensity with most cities located to the left-hand side of the turning point by 2013. This also provides significant implications on the cost burden of complying with various intensity-based mitigation targets under China's current regulatory regime.

Suggested Citation

  • Wu, Jianxin & Ma, Chunbo & Tang, Kai, 2019. "The static and dynamic heterogeneity and determinants of marginal abatement cost of CO2 emissions in Chinese cities," Energy, Elsevier, vol. 178(C), pages 685-694.
  • Handle: RePEc:eee:energy:v:178:y:2019:i:c:p:685-694
    DOI: 10.1016/j.energy.2019.04.154
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421930787X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.04.154?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yanrui Wu, 2016. "China's Capital Stock Series by Region and Sector," Frontiers of Economics in China-Selected Publications from Chinese Universities, Higher Education Press, vol. 11(1), pages 156-172, March.
    2. Glaeser, Edward L. & Kahn, Matthew E., 2010. "The greenness of cities: Carbon dioxide emissions and urban development," Journal of Urban Economics, Elsevier, vol. 67(3), pages 404-418, May.
    3. Wang, Ke & Wei, Yi-Ming & Huang, Zhimin, 2016. "Potential gains from carbon emissions trading in China: A DEA based estimation on abatement cost savings," Omega, Elsevier, vol. 63(C), pages 48-59.
    4. Chang, Kai & Zhang, Chao & Chang, Hao, 2016. "Emissions reduction allocation and economic welfare estimation through interregional emissions trading in China: Evidence from efficiency and equity," Energy, Elsevier, vol. 113(C), pages 1125-1135.
    5. Choi, Yongrok & Zhang, Ning & Zhou, P., 2012. "Efficiency and abatement costs of energy-related CO2 emissions in China: A slacks-based efficiency measure," Applied Energy, Elsevier, vol. 98(C), pages 198-208.
    6. Larson, William & Yezer, Anthony, 2015. "The energy implications of city size and density," Journal of Urban Economics, Elsevier, vol. 90(C), pages 35-49.
    7. He, Weijun & Wang, Bo & Danish, & Wang, Zhaohua, 2018. "Will regional economic integration influence carbon dioxide marginal abatement costs? Evidence from Chinese panel data," Energy Economics, Elsevier, vol. 74(C), pages 263-274.
    8. Tihomir Ancev & M. A.S. Azad & Francesc Hernández-Sancho (ed.), 2017. "New Directions in Productivity Measurement and Efficiency Analysis," Books, Edward Elgar Publishing, number 17409.
    9. Chunbo Ma and Atakelty Hailu, 2016. "The Marginal Abatement Cost of Carbon Emissions in China," The Energy Journal, International Association for Energy Economics, vol. 0(China Spe).
    10. Tang, Kai & Hailu, Atakelty & Kragt, Marit E. & Ma, Chunbo, 2016. "Marginal abatement costs of greenhouse gas emissions: broadacre farming in the Great Southern Region of Western Australia," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 60(3), July.
    11. Ma, Chunbo & Stern, David I., 2016. "Long-run estimates of interfuel and interfactor elasticities," Resource and Energy Economics, Elsevier, vol. 46(C), pages 114-130.
    12. Da Zhang & Marco Springmann & Valerie J. Karplus, 2016. "Equity and emissions trading in China," Climatic Change, Springer, vol. 134(1), pages 131-146, January.
    13. Wei, Chu & Löschel, Andreas & Liu, Bing, 2013. "An empirical analysis of the CO2 shadow price in Chinese thermal power enterprises," Energy Economics, Elsevier, vol. 40(C), pages 22-31.
    14. Ren, Shenggang & Yuan, Baolong & Ma, Xie & Chen, Xiaohong, 2014. "The impact of international trade on China׳s industrial carbon emissions since its entry into WTO," Energy Policy, Elsevier, vol. 69(C), pages 624-634.
    15. Jeanneaux, Philippe & Latruffe, Laure, 2016. "Modelling pollution-generating technologies in performance benchmarking: Recent developments, limits and future prospects in the nonparametric frameworkAuthor-Name: Dakpo, K. Hervé," European Journal of Operational Research, Elsevier, vol. 250(2), pages 347-359.
    16. Minxing Jiang & Bangzhu Zhu & Julien Chevallier & Rui Xie, 2018. "Allocating provincial CO2 quotas for the Chinese national carbon program," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 62(3), pages 457-479, July.
    17. Pettersson, Fredrik & Maddison, David & Acar, Sevil & Söderholm, Patrik, 2014. "Convergence of Carbon Dioxide Emissions: A Review of the Literature," International Review of Environmental and Resource Economics, now publishers, vol. 7(2), pages 141-178, July.
    18. Apostolakis, Bobby E., 1990. "Energy--capital substitutability/ complementarity : The dichotomy," Energy Economics, Elsevier, vol. 12(1), pages 48-58, January.
    19. Johnson, Paul A., 2005. "A continuous state space approach to "Convergence by Parts"," Economics Letters, Elsevier, vol. 86(3), pages 317-321, March.
    20. Tang, Kai & Hailu, Atakelty & Kragt, Marit E. & Ma, Chunbo, 2018. "The response of broadacre mixed crop-livestock farmers to agricultural greenhouse gas abatement incentives," Agricultural Systems, Elsevier, vol. 160(C), pages 11-20.
    21. Yang, Hang & Zhang, Yongxin & Zheng, Chenghang & Wu, Xuecheng & Chen, Linghong & Fu, Joshua S. & Gao, Xiang, 2018. "Cost estimate of the multi-pollutant abatement in coal-fired power sector in China," Energy, Elsevier, vol. 161(C), pages 523-535.
    22. Nazrul Islam, 2003. "What have We Learnt from the Convergence Debate?," Journal of Economic Surveys, Wiley Blackwell, vol. 17(3), pages 309-362, July.
    23. Du, Limin & Hanley, Aoife & Wei, Chu, 2015. "Estimating the Marginal Abatement Cost Curve of CO2 Emissions in China: Provincial Panel Data Analysis," Energy Economics, Elsevier, vol. 48(C), pages 217-229.
    24. Lin, Boqiang & Jia, Zhijie, 2018. "Impact of quota decline scheme of emission trading in China: A dynamic recursive CGE model," Energy, Elsevier, vol. 149(C), pages 190-203.
    25. Kai Tang & Chuantian He & Chunbo Ma & Dong Wang, 2019. "Does carbon farming provide a cost‐effective option to mitigate GHG emissions? Evidence from China," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 63(3), pages 575-592, July.
    26. Atakelty Hailu & Chunbo Ma, 2017. "Estimating the cost of carbon abatement for China," Chapters, in: Tihomir Ancev & M. A.S. Azad & Francesc Hernández-Sancho (ed.), New Directions in Productivity Measurement and Efficiency Analysis, chapter 11, pages 232-248, Edward Elgar Publishing.
    27. Su, Bin & Thomson, Elspeth, 2016. "China's carbon emissions embodied in (normal and processing) exports and their driving forces, 2006–2012," Energy Economics, Elsevier, vol. 59(C), pages 414-422.
    28. Gong, Chengzhu & Tang, Kai & Zhu, Kejun & Hailu, Atakelty, 2016. "An optimal time-of-use pricing for urban gas: A study with a multi-agent evolutionary game-theoretic perspective," Applied Energy, Elsevier, vol. 163(C), pages 283-294.
    29. Ke Wang & Linan Che & Chunbo Ma & Yi-Ming Wei, 2017. "The Shadow Price of CO2 Emissions in China's Iron and Steel Industry," CEEP-BIT Working Papers 105, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    30. Li, Ye & Cui, Qiang, 2018. "Investigating the role of cooperation in the GHG abatement costs of airlines under CNG2020 strategy via a DEA cross PAC model," Energy, Elsevier, vol. 161(C), pages 725-736.
    31. Leleu, Hervé, 2013. "Shadow pricing of undesirable outputs in nonparametric analysis," European Journal of Operational Research, Elsevier, vol. 231(2), pages 474-480.
    32. Yang, Lin & Yang, Yuantao & Zhang, Xian & Tang, Kai, 2018. "Whether China's industrial sectors make efforts to reduce CO2 emissions from production? - A decomposed decoupling analysis," Energy, Elsevier, vol. 160(C), pages 796-809.
    33. Lee, Myunghun & Zhang, Ning, 2012. "Technical efficiency, shadow price of carbon dioxide emissions, and substitutability for energy in the Chinese manufacturing industries," Energy Economics, Elsevier, vol. 34(5), pages 1492-1497.
    34. Atakelty Hailu & Terrence S. Veeman, 2001. "Non-parametric Productivity Analysis with Undesirable Outputs: An Application to the Canadian Pulp and Paper Industry," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 83(3), pages 605-616.
    35. Murty, Sushama & Robert Russell, R. & Levkoff, Steven B., 2012. "On modeling pollution-generating technologies," Journal of Environmental Economics and Management, Elsevier, vol. 64(1), pages 117-135.
    36. David I. Stern and Astrid Kander, 2012. "The Role of Energy in the Industrial Revolution and Modern Economic Growth," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    37. He, Xiaoping, 2015. "Regional differences in China's CO2 abatement cost," Energy Policy, Elsevier, vol. 80(C), pages 145-152.
    38. Xiao, He & Wei, Qingpeng & Wang, Hailin, 2014. "Marginal abatement cost and carbon reduction potential outlook of key energy efficiency technologies in China׳s building sector to 2030," Energy Policy, Elsevier, vol. 69(C), pages 92-105.
    39. Du, Limin & Mao, Jie, 2015. "Estimating the environmental efficiency and marginal CO2 abatement cost of coal-fired power plants in China," Energy Policy, Elsevier, vol. 85(C), pages 347-356.
    40. Fare, Rolf & Grosskopf, Shawna & Noh, Dong-Woon & Weber, William, 2005. "Characteristics of a polluting technology: theory and practice," Journal of Econometrics, Elsevier, vol. 126(2), pages 469-492, June.
    41. Limin Du & Aoife Hanley & Chu Wei, 2015. "Marginal Abatement Costs of Carbon Dioxide Emissions in China: A Parametric Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 61(2), pages 191-216, June.
    42. Rolf Färe & Shawna Grosskopf, 2003. "Nonparametric Productivity Analysis with Undesirable Outputs: Comment," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 85(4), pages 1070-1074.
    43. Tang, Kai & Yang, Lin & Zhang, Jianwu, 2016. "Estimating the regional total factor efficiency and pollutants’ marginal abatement costs in China: A parametric approach," Applied Energy, Elsevier, vol. 184(C), pages 230-240.
    44. Xia, Yan & Tang, Zhipeng, 2017. "The impacts of emissions accounting methods on an imperfect competitive carbon trading market," Energy, Elsevier, vol. 119(C), pages 67-76.
    45. Zhou, P. & Zhang, L. & Zhou, D.Q. & Xia, W.J., 2013. "Modeling economic performance of interprovincial CO2 emission reduction quota trading in China," Applied Energy, Elsevier, vol. 112(C), pages 1518-1528.
    46. Zhou, P. & Zhou, X. & Fan, L.W., 2014. "On estimating shadow prices of undesirable outputs with efficiency models: A literature review," Applied Energy, Elsevier, vol. 130(C), pages 799-806.
    47. Kuosmanen, Timo & Kazemi Matin, Reza, 2011. "Duality of weakly disposable technology," Omega, Elsevier, vol. 39(5), pages 504-512, October.
    48. Wei, Chu & Ni, Jinlan & Du, Limin, 2012. "Regional allocation of carbon dioxide abatement in China," China Economic Review, Elsevier, vol. 23(3), pages 552-565.
    49. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zijie Shen & Liguo Xin, 2022. "Characterizing Carbon Emissions and the Associations with Socio-Economic Development in Chinese Cities," IJERPH, MDPI, vol. 19(21), pages 1-11, October.
    2. Ifeacho Christopher I & Choga Ireen, 2023. "Analysis of the Nature and Determinants of Energy Price Dynamics in Sub-Saharan Africa (SSA)," Studia Universitatis „Vasile Goldis” Arad – Economics Series, Sciendo, vol. 33(2), pages 27-48, June.
    3. Kai Tang & Qianbo Chen & Weijie Tan & Yi Jun Wu Feng, 2022. "The Impact of Financial Deepening on Carbon Reductions in China: Evidence from City- and Enterprise-Level Data," IJERPH, MDPI, vol. 19(18), pages 1-15, September.
    4. Xu, Bin & Lin, Boqiang, 2020. "Investigating drivers of CO2 emission in China’s heavy industry: A quantile regression analysis," Energy, Elsevier, vol. 206(C).
    5. Nawab Khan & Ram L. Ray & Hazem S. Kassem & Muhammad Ihtisham & Abdullah & Simplice A. Asongu & Stephen Ansah & Shemei Zhang, 2021. "Toward Cleaner Production: Can Mobile Phone Technology Help Reduce Inorganic Fertilizer Application? Evidence Using a National Level Dataset," Land, MDPI, vol. 10(10), pages 1-19, September.
    6. de Lucas-Santos, Sonia & Delgado-Rodríguez, María Jesús & Cabezas-Ares, Alfredo, 2021. "Cyclical convergence in per capita carbon dioxide emission in US states: A dynamic unobserved component approach," Energy, Elsevier, vol. 217(C).
    7. Bei Gao & Zuoren Sun, 2023. "Marginal CO 2 and SO 2 Abatement Costs and Determinants of Coal-Fired Power Plants in China: Considering a Two-Stage Production System with Different Emission Reduction Approaches," Energies, MDPI, vol. 16(8), pages 1-26, April.
    8. Xian, Yujiao & Hu, Zhihui & Wang, Ke, 2023. "The least-cost abatement measure of carbon emissions for China's glass manufacturing industry based on the marginal abatement costs," Energy, Elsevier, vol. 284(C).
    9. Di Zhou & Xiaoyu Liang & Ye Zhou & Kai Tang, 2020. "Does Emission Trading Boost Carbon Productivity? Evidence from China’s Pilot Emission Trading Scheme," IJERPH, MDPI, vol. 17(15), pages 1-16, July.
    10. Fan Wang & Lili Feng & Jin Li & Lin Wang, 2020. "Environmental Regulation, Tenure Length of Officials, and Green Innovation of Enterprises," IJERPH, MDPI, vol. 17(7), pages 1-16, March.
    11. Yu, Yantuan & Tang, Kai, 2023. "Does financial inclusion improve energy efficiency?," Technological Forecasting and Social Change, Elsevier, vol. 186(PA).
    12. Yang, Jun & Cheng, Jixin & Zou, Ran & Geng, Zhifei, 2021. "Industrial SO2 technical efficiency, reduction potential and technology heterogeneities of China's prefecture-level cities: A multi-hierarchy meta-frontier parametric approach," Energy Economics, Elsevier, vol. 104(C).
    13. Tang, Kai & Hailu, Atakelty, 2020. "Smallholder farms’ adaptation to the impacts of climate change: Evidence from China’s Loess Plateau," Land Use Policy, Elsevier, vol. 91(C).
    14. Du, Huibin & Li, Qun & Liu, Xi & Peng, Binbin & Southworth, Frank, 2021. "Costs and potentials of reducing CO2 emissions in China's transport sector: Findings from an energy system analysis," Energy, Elsevier, vol. 234(C).
    15. Wu, Jianxin & Xu, Hui & Tang, Kai, 2021. "Industrial agglomeration, CO2 emissions and regional development programs: A decomposition analysis based on 286 Chinese cities," Energy, Elsevier, vol. 225(C).
    16. Cui, Hongmin & Xu, Jianguo & Shi, Jinsong & Yan, Nanfu & Liu, Yuewei, 2019. "Facile fabrication of nitrogen doped carbon from filter paper for CO2 adsorption," Energy, Elsevier, vol. 187(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Chunbo & Hailu, Atakelty & You, Chaoying, 2019. "A critical review of distance function based economic research on China’s marginal abatement cost of carbon dioxide emissions," Energy Economics, Elsevier, vol. 84(C).
    2. Jianxin Wu & Chunbo Ma, 2019. "The Convergence of China’s Marginal Abatement Cost of CO2: An Emission-Weighted Continuous State Space Approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(4), pages 1099-1119, April.
    3. Wu, Yinyin & Yu, Jie & Song, Malin & Chen, Jiandong & Hou, Wenxuan, 2021. "Shadow prices of industrial air pollutant emissions in China," Economic Modelling, Elsevier, vol. 94(C), pages 726-736.
    4. Tang, Kai & Yang, Lin & Zhang, Jianwu, 2016. "Estimating the regional total factor efficiency and pollutants’ marginal abatement costs in China: A parametric approach," Applied Energy, Elsevier, vol. 184(C), pages 230-240.
    5. Cui, Lixin & Dong, Ruxue & Mu, Yunguo & Shen, Zhiyang & Xu, Jiatong, 2022. "How policy preferences affect the carbon shadow price in the OECD," Applied Energy, Elsevier, vol. 311(C).
    6. Zhang, Ning & Huang, Xuhui & Qi, Chao, 2022. "The effect of environmental regulation on the marginal abatement cost of industrial firms: Evidence from the 11th Five-Year Plan in China," Energy Economics, Elsevier, vol. 112(C).
    7. Zhang, Weijie & Zhang, Ning & Yu, Yanni, 2019. "Carbon mitigation effects and potential cost savings from carbon emissions trading in China's regional industry," Technological Forecasting and Social Change, Elsevier, vol. 141(C), pages 1-11.
    8. Wang, Zhaohua & Song, Yanwu & Shen, Zhiyang, 2022. "Global sustainability of carbon shadow pricing: The distance between observed and optimal abatement costs," Energy Economics, Elsevier, vol. 110(C).
    9. Shen, Zhiyang & Bai, Kaixuan & Hong, Tianyang & Balezentis, Tomas, 2021. "Evaluation of carbon shadow price within a non-parametric meta-frontier framework: The case of OECD, ASEAN and BRICS," Applied Energy, Elsevier, vol. 299(C).
    10. Boussemart, Jean-Philippe & Leleu, Hervé & Shen, Zhiyang, 2017. "Worldwide carbon shadow prices during 1990–2011," Energy Policy, Elsevier, vol. 109(C), pages 288-296.
    11. Wang, Jian & Lv, Kangjuan & Bian, Yiwen & Cheng, Yu, 2017. "Energy efficiency and marginal carbon dioxide emission abatement cost in urban China," Energy Policy, Elsevier, vol. 105(C), pages 246-255.
    12. Ke Wang & Linan Che & Chunbo Ma & Yi-Ming Wei, 2017. "The Shadow Price of CO2 Emissions in China's Iron and Steel Industry," CEEP-BIT Working Papers 105, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    13. Wei, Xiao & Zhang, Ning, 2020. "The shadow prices of CO2 and SO2 for Chinese Coal-fired Power Plants: A partial frontier approach," Energy Economics, Elsevier, vol. 85(C).
    14. Dai, Sheng & Zhou, Xun & Kuosmanen, Timo, 2020. "Forward-looking assessment of the GHG abatement cost: Application to China," Energy Economics, Elsevier, vol. 88(C).
    15. Xian, Yujiao & Wang, Ke & Wei, Yi-Ming & Huang, Zhimin, 2019. "Would China’s power industry benefit from nationwide carbon emission permit trading? An optimization model-based ex post analysis on abatement cost savings," Applied Energy, Elsevier, vol. 235(C), pages 978-986.
    16. Li, Tianxiang & Baležentis, Tomas & Makutėnienė, Daiva & Streimikiene, Dalia & Kriščiukaitienė, Irena, 2016. "Energy-related CO2 emission in European Union agriculture: Driving forces and possibilities for reduction," Applied Energy, Elsevier, vol. 180(C), pages 682-694.
    17. Du, Limin & Hanley, Aoife & Wei, Chu, 2015. "Estimating the Marginal Abatement Cost Curve of CO2 Emissions in China: Provincial Panel Data Analysis," Energy Economics, Elsevier, vol. 48(C), pages 217-229.
    18. He, Weijun & Wang, Bo & Danish, & Wang, Zhaohua, 2018. "Will regional economic integration influence carbon dioxide marginal abatement costs? Evidence from Chinese panel data," Energy Economics, Elsevier, vol. 74(C), pages 263-274.
    19. Chen, Zhenling & Yuan, Xiao-Chen & Zhang, Xiaoling & Cao, Yunfei, 2020. "How will the Chinese national carbon emissions trading scheme work? The assessment of regional potential gains," Energy Policy, Elsevier, vol. 137(C).
    20. Jiekun Song & Zhicheng Liu & Rui Chen & Xueli Leng, 2023. "Calculation and Allocation of Atmospheric Environment Governance Cost in the Yangtze River Economic Belt of China," IJERPH, MDPI, vol. 20(5), pages 1-21, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:178:y:2019:i:c:p:685-694. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.