IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v61y2013icp717-728.html
   My bibliography  Save this article

Development of a virtual power market model to investigate strategic and collusive behavior of market players

Author

Listed:
  • Shafie-khah, Miadreza
  • Parsa Moghaddam, Mohsen
  • Sheikh-El-Eslami, Mohamad Kazem

Abstract

In this paper, a virtual power market model is proposed to investigate the behavior of power market players from regulator's point of view. In this approach, strategic players are modeled in a multi-agent environment. These agents which are virtual representative of actual players forecast the prices and participate in the markets, exactly the same as real world situation. In addition, the role of ISO is encountered by using security constraint unit commitment (SCUC) and security constraint economic dispatch (SCED) solutions. Moreover, the interaction between market players is modeled using a heuristic dynamic game theory algorithm based on the supply function equilibria (SFE). In addition to the collusive behavior, using the proposed model, the short-term strategic behavior of players, which their effects will appear in long-term, can be simulated.

Suggested Citation

  • Shafie-khah, Miadreza & Parsa Moghaddam, Mohsen & Sheikh-El-Eslami, Mohamad Kazem, 2013. "Development of a virtual power market model to investigate strategic and collusive behavior of market players," Energy Policy, Elsevier, vol. 61(C), pages 717-728.
  • Handle: RePEc:eee:enepol:v:61:y:2013:i:c:p:717-728
    DOI: 10.1016/j.enpol.2013.06.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421513004801
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2013.06.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Niknam, Taher & Azizipanah-Abarghooee, Rasoul & Narimani, Mohammad Rasoul, 2012. "An efficient scenario-based stochastic programming framework for multi-objective optimal micro-grid operation," Applied Energy, Elsevier, vol. 99(C), pages 455-470.
    2. David M. Newbery, 1998. "Competition, Contracts, and Entry in the Electricity Spot Market," RAND Journal of Economics, The RAND Corporation, vol. 29(4), pages 726-749, Winter.
    3. Green, Richard J, 1996. "Increasing Competition in the British Electricity Spot Market," Journal of Industrial Economics, Wiley Blackwell, vol. 44(2), pages 205-216, June.
    4. Ventosa, Mariano & Baillo, Alvaro & Ramos, Andres & Rivier, Michel, 2005. "Electricity market modeling trends," Energy Policy, Elsevier, vol. 33(7), pages 897-913, May.
    5. Neuhoff, Karsten & Barquin, Julian & Boots, Maroeska G. & Ehrenmann, Andreas & Hobbs, Benjamin F. & Rijkers, Fieke A.M. & Vazquez, Miguel, 2005. "Network-constrained Cournot models of liberalized electricity markets: the devil is in the details," Energy Economics, Elsevier, vol. 27(3), pages 495-525, May.
    6. Catherine D. Wolfram, 1998. "Strategic Bidding in a Multiunit Auction: An Empirical Analysis of Bids to Supply Electricity in England and Wales," RAND Journal of Economics, The RAND Corporation, vol. 29(4), pages 703-725, Winter.
    7. Green, Richard J & Newbery, David M, 1992. "Competition in the British Electricity Spot Market," Journal of Political Economy, University of Chicago Press, vol. 100(5), pages 929-953, October.
    8. Lise, Wietze & Linderhof, Vincent & Kuik, Onno & Kemfert, Claudia & Ostling, Robert & Heinzow, Thomas, 2006. "A game theoretic model of the Northwestern European electricity market--market power and the environment," Energy Policy, Elsevier, vol. 34(15), pages 2123-2136, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Huihui & Chen, ZhanMing & Wang, Jianliang & Fan, Jihong, 2017. "The impact of resource tax reform on China's coal industry," Energy Economics, Elsevier, vol. 61(C), pages 52-61.
    2. Liu, HuiHui & Zhang, ZhongXiang & Chen, ZhanMing & Dou, DeSheng, 2018. "The Impact of China’s Electricity Deregulation on Coal and Power Industries: Two-stage Game Modeling Approach," ETA: Economic Theory and Applications 273367, Fondazione Eni Enrico Mattei (FEEM).
    3. Kasaei, Mohammad Javad & Gandomkar, Majid & Nikoukar, Javad, 2017. "Optimal management of renewable energy sources by virtual power plant," Renewable Energy, Elsevier, vol. 114(PB), pages 1180-1188.
    4. Przemysław Kaszyński & Aleksandra Komorowska & Jacek Kamiński, 2023. "Revisiting Market Power in the Polish Power System," Energies, MDPI, vol. 16(13), pages 1-23, June.
    5. Tascikaraoglu, A. & Erdinc, O. & Uzunoglu, M. & Karakas, A., 2014. "An adaptive load dispatching and forecasting strategy for a virtual power plant including renewable energy conversion units," Applied Energy, Elsevier, vol. 119(C), pages 445-453.
    6. Rode, David C. & Fischbeck, Paul S., 2018. "Reduced-form models for power market risk analysis," Applied Energy, Elsevier, vol. 228(C), pages 1640-1655.
    7. Wu, Zhongqun & Sun, Hongxia, 2015. "Behavior of Chinese enterprises in evaluating wind power projects: A review based on survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 133-142.
    8. Nosratabadi, Seyyed Mostafa & Hooshmand, Rahmat-Allah & Gholipour, Eskandar, 2017. "A comprehensive review on microgrid and virtual power plant concepts employed for distributed energy resources scheduling in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 341-363.
    9. Nosratabadi, Seyyed Mostafa & Hooshmand, Rahmat-Allah & Gholipour, Eskandar, 2016. "Stochastic profit-based scheduling of industrial virtual power plant using the best demand response strategy," Applied Energy, Elsevier, vol. 164(C), pages 590-606.
    10. Liu, HuiHui & Zhang, ZhongXiang & Chen, Zhan-Ming & Dou, DeSheng, 2019. "The impact of China's electricity price deregulation on coal and power industries: Two-stage game modeling," Energy Policy, Elsevier, vol. 134(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Crawford, Gregory S. & Crespo, Joseph & Tauchen, Helen, 2007. "Bidding asymmetries in multi-unit auctions: Implications of bid function equilibria in the British spot market for electricity," International Journal of Industrial Organization, Elsevier, vol. 25(6), pages 1233-1268, December.
    2. Willems, Bert & Rumiantseva, Ina & Weigt, Hannes, 2009. "Cournot versus Supply Functions: What does the data tell us?," Energy Economics, Elsevier, vol. 31(1), pages 38-47, January.
    3. Dzikri Firmansyah Hakam, 2018. "Market Power Modelling in Electricity Market: A Critical Review," International Journal of Energy Economics and Policy, Econjournals, vol. 8(5), pages 347-356.
    4. Wolf-Peter Schill & Claudia Kemfert, 2011. "Modeling Strategic Electricity Storage: The Case of Pumped Hydro Storage in Germany," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 59-88.
    5. O'Mahoney, Amy & Denny, Eleanor, 2013. "Electricity prices and generator behaviour in gross pool electricity markets," Energy Policy, Elsevier, vol. 63(C), pages 628-637.
    6. Moutinho, Victor & Moreira, António C. & Mota, Jorge, 2014. "Do regulatory mechanisms promote competition and mitigate market power? Evidence from Spanish electricity market," Energy Policy, Elsevier, vol. 68(C), pages 403-412.
    7. Mulder, Machiel & Petrikaitė, Vaiva & Scholtens, Bert, 2015. "Distributed energy generation techniques and the competitive fringe effect in electricity markets," Resource and Energy Economics, Elsevier, vol. 42(C), pages 125-140.
    8. SMEERS, Yves, 2005. "How well can one measure market power in restructured electricity systems ?," LIDAM Discussion Papers CORE 2005050, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    9. Fabra, Natalia & Toro, Juan, 2005. "Price wars and collusion in the Spanish electricity market," International Journal of Industrial Organization, Elsevier, vol. 23(3-4), pages 155-181, April.
    10. Zugang Liu & Anna Nagurney, 2009. "An integrated electric power supply chain and fuel market network framework: Theoretical modeling with empirical analysis for New England," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(7), pages 600-624, October.
    11. Jun Honda, 2015. "Games with the Total Bandwagon Property," Department of Economics Working Papers wuwp197, Vienna University of Economics and Business, Department of Economics.
    12. Holmberg, Pär & Newbery, David & Ralph, Daniel, 2013. "Supply function equilibria: Step functions and continuous representations," Journal of Economic Theory, Elsevier, vol. 148(4), pages 1509-1551.
    13. Green, Richard, 2003. "Failing electricity markets: should we shoot the pools?," Utilities Policy, Elsevier, vol. 11(3), pages 155-167, September.
    14. Andrew Sweeting, 2007. "Market Power In The England And Wales Wholesale Electricity Market 1995-2000," Economic Journal, Royal Economic Society, vol. 117(520), pages 654-685, April.
    15. Pär Holmberg & Andy Philpott, 2014. "Supply function equilibria in transportation networks," Cambridge Working Papers in Economics 1421, Faculty of Economics, University of Cambridge.
    16. Carlos Suarez, 2021. "Private management and strategic bidding behavior in electricity markets: Evidence from Colombia," IREA Working Papers 202102, University of Barcelona, Research Institute of Applied Economics, revised Jan 2021.
    17. Bolle, Friedel & Grimm, Veronika & Ockenfels, Axel & del Pozo, Xavier, 2013. "An experiment on supply function competition," European Economic Review, Elsevier, vol. 63(C), pages 170-185.
    18. Jorge Balat & Juan E. Carranza & Juan D. Martin, 2015. "Dynamic and Strategic Behavior in Hydropower-Dominated Electricity Markets: Empirical Evidence for Colombia," Borradores de Economia 886, Banco de la Republica de Colombia.
    19. Hakam, Dzikri Firmansyah, 2019. "Mitigating the risk of market power abuse in electricity sector restructuring: Evidence from Indonesia," Utilities Policy, Elsevier, vol. 56(C), pages 181-191.
    20. Carlo Fezzi & Derek Bunn, 2010. "Structural Analysis of Electricity Demand and Supply Interactions," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 72(6), pages 827-856, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:61:y:2013:i:c:p:717-728. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.