IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v112y2022ics0140988322003140.html
   My bibliography  Save this article

Equilibrium pricing for carbon emission in response to the target of carbon emission peaking

Author

Listed:
  • Huang, Zhehao
  • Dong, Hao
  • Jia, Shuaishuai

Abstract

The climate warming effect on global economic output and social sustainability should be paid adequate attention. Nowadays, the best way is thought as the market-based pricing policy for carbon emission, which can reflect the emission cost by directly considering the economic efficiency. In response to the target of peak carbon emission before 2030 by China, this paper formulates an equilibrium carbon price by setting up a stochastic equilibrium model, depicting the interplay between the national economic output, carbon emission and climate change. An explicit pricing formula for carbon emission is presented, which clearly discloses the intrinsic link of carbon price to other considered variables and parameters. In addition to this, some interesting results are achieved. First, we calculate the drift and the approximate volatility of the carbon price. It is found that the drift is completely determined by the climate elements, while the approximate volatility shows a three-dimensional surface structure, not only time- and price-dependent, but also dependent on the carbon emission. Second, we find that the carbon price happens a jump at the deadline of the abatement period, in response to the failure of carbon abatement. Third, via sensitivity analysis, we capture the bifurcation phenomena in the carbon price induced by the economic growth rate and negative effect of climate warming. In conclusion, our equilibrium carbon price plays the role of benchmark in the national carbon emission trading market, leading to the realization of the abatement target.

Suggested Citation

  • Huang, Zhehao & Dong, Hao & Jia, Shuaishuai, 2022. "Equilibrium pricing for carbon emission in response to the target of carbon emission peaking," Energy Economics, Elsevier, vol. 112(C).
  • Handle: RePEc:eee:eneeco:v:112:y:2022:i:c:s0140988322003140
    DOI: 10.1016/j.eneco.2022.106160
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988322003140
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2022.106160?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marshall Burke & Solomon M. Hsiang & Edward Miguel, 2015. "Global non-linear effect of temperature on economic production," Nature, Nature, vol. 527(7577), pages 235-239, November.
    2. Zheng, Zeyu & Xiao, Rui & Shi, Haibo & Li, Guihong & Zhou, Xiaofeng, 2015. "Statistical regularities of Carbon emission trading market: Evidence from European Union allowances," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 426(C), pages 9-15.
    3. Benz, Eva & Trück, Stefan, 2009. "Modeling the price dynamics of CO2 emission allowances," Energy Economics, Elsevier, vol. 31(1), pages 4-15, January.
    4. Arouri, Mohamed El Hédi & Jawadi, Fredj & Nguyen, Duc Khuong, 2012. "Nonlinearities in carbon spot-futures price relationships during Phase II of the EU ETS," Economic Modelling, Elsevier, vol. 29(3), pages 884-892.
    5. Frederick Ploeg & Aart Zeeuw, 2019. "Pricing Carbon and Adjusting Capital to Fend Off Climate Catastrophes," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(1), pages 29-50, January.
    6. Steffen Hitzemann & Marliese Uhrig-Homburg, 2019. "Empirical performance of reduced-form models for emission permit prices," Review of Derivatives Research, Springer, vol. 22(3), pages 389-418, October.
    7. Byun, Suk Joon & Cho, Hangjun, 2013. "Forecasting carbon futures volatility using GARCH models with energy volatilities," Energy Economics, Elsevier, vol. 40(C), pages 207-221.
    8. René Carmona & Juri Hinz, 2011. "Risk-Neutral Models for Emission Allowance Prices and Option Valuation," Management Science, INFORMS, vol. 57(8), pages 1453-1468, August.
    9. Gary Yohe & Michael Oppenheimer, 2011. "Evaluation, characterization, and communication of uncertainty by the intergovernmental panel on climate change—an introductory essay," Climatic Change, Springer, vol. 108(4), pages 629-639, October.
    10. Susanne Kruse & Matthias Meitner & Michael Schroder, 2005. "On the pricing of GDP-linked financial products," Applied Financial Economics, Taylor & Francis Journals, vol. 15(16), pages 1125-1133.
    11. Yongyang Cai & Thomas S. Lontzek, 2019. "The Social Cost of Carbon with Economic and Climate Risks," Journal of Political Economy, University of Chicago Press, vol. 127(6), pages 2684-2734.
    12. Chamon, Marcos & Mauro, Paolo, 2006. "Pricing growth-indexed bonds," Journal of Banking & Finance, Elsevier, vol. 30(12), pages 3349-3366, December.
    13. Bangzhu Zhu & Xuetao Shi & Julien Chevallier & Ping Wang & Yi‐Ming Wei, 2016. "An Adaptive Multiscale Ensemble Learning Paradigm for Nonstationary and Nonlinear Energy Price Time Series Forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(7), pages 633-651, November.
    14. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2009. "Temperature and Income: Reconciling New Cross-Sectional and Panel Estimates," American Economic Review, American Economic Association, vol. 99(2), pages 198-204, May.
    15. Umut Çetin & Michel Verschuere, 2009. "Pricing And Hedging In Carbon Emissions Markets," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 12(07), pages 949-967.
    16. Fu, Yang & Zheng, Zeyu, 2020. "Volatility modeling and the asymmetric effect for China’s carbon trading pilot market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    17. Eugenia Sanin, María & Violante, Francesco & Mansanet-Bataller, María, 2015. "Understanding volatility dynamics in the EU-ETS market," Energy Policy, Elsevier, vol. 82(C), pages 321-331.
    18. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2012. "Temperature Shocks and Economic Growth: Evidence from the Last Half Century," American Economic Journal: Macroeconomics, American Economic Association, vol. 4(3), pages 66-95, July.
    19. Mikhail Golosov & John Hassler & Per Krusell & Aleh Tsyvinski, 2014. "Optimal Taxes on Fossil Fuel in General Equilibrium," Econometrica, Econometric Society, vol. 82(1), pages 41-88, January.
    20. Seifert, Jan & Uhrig-Homburg, Marliese & Wagner, Michael, 2008. "Dynamic behavior of CO2 spot prices," Journal of Environmental Economics and Management, Elsevier, vol. 56(2), pages 180-194, September.
    21. Hitzemann, Steffen & Uhrig-Homburg, Marliese, 2018. "Equilibrium Price Dynamics of Emission Permits," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 53(4), pages 1653-1678, August.
    22. Marc Chesney & Luca Taschini, 2012. "The Endogenous Price Dynamics of Emission Allowances and an Application to CO 2 Option Pricing," Applied Mathematical Finance, Taylor & Francis Journals, vol. 19(5), pages 447-475, November.
    23. Zhu, Bangzhu & Wei, Yiming, 2013. "Carbon price forecasting with a novel hybrid ARIMA and least squares support vector machines methodology," Omega, Elsevier, vol. 41(3), pages 517-524.
    24. Zhang, Yue-Jun & Wei, Yi-Ming, 2010. "An overview of current research on EU ETS: Evidence from its operating mechanism and economic effect," Applied Energy, Elsevier, vol. 87(6), pages 1804-1814, June.
    25. Cetin, Umut & Verschuere, Michel, 2009. "Pricing and hedging in carbon emissions markets," LSE Research Online Documents on Economics 29321, London School of Economics and Political Science, LSE Library.
    26. Maximilian Auffhammer & Solomon M. Hsiang & Wolfram Schlenker & Adam Sobel, 2013. "Using Weather Data and Climate Model Output in Economic Analyses of Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 7(2), pages 181-198, July.
    27. Sun, Wei & Zhang, Chongchong, 2018. "Analysis and forecasting of the carbon price using multi—resolution singular value decomposition and extreme learning machine optimized by adaptive whale optimization algorithm," Applied Energy, Elsevier, vol. 231(C), pages 1354-1371.
    28. Klepper, Gernot & Peterson, Sonja, 2006. "Marginal abatement cost curves in general equilibrium: The influence of world energy prices," Resource and Energy Economics, Elsevier, vol. 28(1), pages 1-23, January.
    29. Zhou, P. & Zhang, L. & Zhou, D.Q. & Xia, W.J., 2013. "Modeling economic performance of interprovincial CO2 emission reduction quota trading in China," Applied Energy, Elsevier, vol. 112(C), pages 1518-1528.
    30. Daskalakis, George & Psychoyios, Dimitris & Markellos, Raphael N., 2009. "Modeling CO2 emission allowance prices and derivatives: Evidence from the European trading scheme," Journal of Banking & Finance, Elsevier, vol. 33(7), pages 1230-1241, July.
    31. Chang-Jing Ji & Yu-Jie Hu & Bao-Jun Tang, 2018. "Research on carbon market price mechanism and influencing factors: a literature review," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(2), pages 761-782, June.
    32. Abadie, Luis M. & Chamorro, José M., 2008. "European CO2 prices and carbon capture investments," Energy Economics, Elsevier, vol. 30(6), pages 2992-3015, November.
    33. Hambel, Christoph & Kraft, Holger & Schwartz, Eduardo, 2021. "Optimal carbon abatement in a stochastic equilibrium model with climate change," European Economic Review, Elsevier, vol. 132(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenxuan Ma, 2022. "Exploring the Role of Educational Human Capital and Green Finance in Total-Factor Energy Efficiency in the Context of Sustainable Development," Sustainability, MDPI, vol. 15(1), pages 1-18, December.
    2. Huizi Ma & Xuan Miao & Zhen Wang & Xiangrong Wang, 2023. "How Does Green Finance Affect the Sustainable Development of the Regional Economy? Evidence from China," Sustainability, MDPI, vol. 15(4), pages 1-16, February.
    3. Hao Dong & Tao Li, 2023. "Climate Economics and Finance: A Literature Review," Climate Economics and Finance, Anser Press, vol. 1(1), pages 29-45, November.
    4. Shanghui Jia & Xinhui Chen & Liyan Han & Jiayu Jin, 2023. "Global climate change and commodity markets: A hedging perspective," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(10), pages 1393-1422, October.
    5. Pan, Rongkun & Hu, Daimin & Han, Xuefeng & Chao, Jiangkun & Jia, Hailin, 2023. "Analysis of the wetting and exothermic properties of preoxidized coal and the microscopic mechanism," Energy, Elsevier, vol. 271(C).
    6. Haokun Sui & Leilei Han & Yuting Ding, 2022. "Dynamic Analysis of a Delayed Carbon Emission-Absorption Model for China’s Urbanization and Population Growth," Mathematics, MDPI, vol. 10(17), pages 1-13, August.
    7. Marc Ringel & Saranda Mjekic, 2023. "Analyzing the Role of Banks in Providing Green Finance for Retail Customers: The Case of Germany," Sustainability, MDPI, vol. 15(11), pages 1-24, May.
    8. Nikolaos Rodousakis & George Soklis & Theodore Tsekeris, 2022. "A Supply and Use Model for Estimating the Contribution of Costs to Energy Prices," Energies, MDPI, vol. 15(19), pages 1-10, September.
    9. Rongbin Wang & Weifeng Zhang & Wenlong Deng & Ruihao Zhang & Xiaohui Zhang, 2022. "Study on Prediction of Energy Conservation and Carbon Reduction in Universities Based on Exponential Smoothing," Sustainability, MDPI, vol. 14(19), pages 1-11, September.
    10. Armenia Androniceanu & Oana Matilda Sabie, 2022. "Overview of Green Energy as a Real Strategic Option for Sustainable Development," Energies, MDPI, vol. 15(22), pages 1-35, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Julien Chevallier & Benoît Sévi, 2014. "On the Stochastic Properties of Carbon Futures Prices," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 58(1), pages 127-153, May.
    2. Huang, Yumeng & Dai, Xingyu & Wang, Qunwei & Zhou, Dequn, 2021. "A hybrid model for carbon price forecastingusing GARCH and long short-term memory network," Applied Energy, Elsevier, vol. 285(C).
    3. Federico Galán-Valdivieso & Elena Villar-Rubio & María-Dolores Huete-Morales, 2018. "The erratic behaviour of the EU ETS on the path towards consolidation and price stability," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 18(5), pages 689-706, October.
    4. repec:ipg:wpaper:2014-565 is not listed on IDEAS
    5. Fang, Sheng & Lu, Xinsheng & Li, Jianfeng & Qu, Ling, 2018. "Multifractal detrended cross-correlation analysis of carbon emission allowance and stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 551-566.
    6. Julien Chevallier & Stéphane Goutte, 2014. "The goodness-of-fit of the fuel-switching price using the mean-reverting Lévy jump process," Working Papers 2014-285, Department of Research, Ipag Business School.
    7. Peng Chen & Andrew Vivian & Cheng Ye, 2022. "Forecasting carbon futures price: a hybrid method incorporating fuzzy entropy and extreme learning machine," Annals of Operations Research, Springer, vol. 313(1), pages 559-601, June.
    8. Yan, Kai & Zhang, Wei & Shen, Dehua, 2020. "Stylized facts of the carbon emission market in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    9. Hambel, Christoph & Kraft, Holger & Schwartz, Eduardo, 2021. "The social cost of carbon in a non-cooperative world," Journal of International Economics, Elsevier, vol. 131(C).
    10. Steffen Hitzemann & Marliese Uhrig-Homburg, 2019. "Empirical performance of reduced-form models for emission permit prices," Review of Derivatives Research, Springer, vol. 22(3), pages 389-418, October.
    11. Hintermann, Beat & Peterson, Sonja & Rickels, Wilfried, 2014. "Price and market behavior in Phase II of the EU ETS," Kiel Working Papers 1962, Kiel Institute for the World Economy (IfW Kiel).
    12. Richard S.J. Tol, 2020. "The Economic Impact of Weather and Climate," Video Library 2094, Department of Economics, University of Sussex Business School.
    13. John Hua Fan & Eduardo Roca & Alexandr Akimov, 2014. "Estimation and performance evaluation of optimal hedge ratios in the carbon market of the European Union Emissions Trading Scheme," Australian Journal of Management, Australian School of Business, vol. 39(1), pages 73-91, February.
    14. Ahn, Kwangwon & Chu, Zhuang & Lee, Daeyong, 2021. "Effects of renewable energy use in the energy mix on social welfare," Energy Economics, Elsevier, vol. 96(C).
    15. Getachew Nigatu, 2016. "Assessing the effects of climate change policy on the volatility of carbon prices in reference to the Great Recession," Journal of Environmental Economics and Policy, Taylor & Francis Journals, vol. 5(2), pages 200-215, July.
    16. Hambel, Christoph & Kraft, Holger & Schwartz, Eduardo, 2021. "Optimal carbon abatement in a stochastic equilibrium model with climate change," European Economic Review, Elsevier, vol. 132(C).
    17. Julien Chevallier & Stéphane Goutte, 2017. "Estimation of Lévy-driven Ornstein–Uhlenbeck processes: application to modeling of $$\hbox {CO}_2$$ CO 2 and fuel-switching," Annals of Operations Research, Springer, vol. 255(1), pages 169-197, August.
    18. Segnon, Mawuli & Lux, Thomas & Gupta, Rangan, 2017. "Modeling and forecasting the volatility of carbon dioxide emission allowance prices: A review and comparison of modern volatility models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 692-704.
    19. Dorota Ciesielska-Maciągowska & Dawid Klimczak & Małgorzata Skrzek-Lubasińska, 2021. "Central and Eastern European CO 2 Market—Challenges of Emissions Trading for Energy Companies," Energies, MDPI, vol. 14(4), pages 1-14, February.
    20. Lei, Heng & Xue, Minggao & Liu, Huiling, 2022. "Probability distribution forecasting of carbon allowance prices: A hybrid model considering multiple influencing factors," Energy Economics, Elsevier, vol. 113(C).
    21. Jianguo Zhou & Xuejing Huo & Xiaolei Xu & Yushuo Li, 2019. "Forecasting the Carbon Price Using Extreme-Point Symmetric Mode Decomposition and Extreme Learning Machine Optimized by the Grey Wolf Optimizer Algorithm," Energies, MDPI, vol. 12(5), pages 1-22, March.

    More about this item

    Keywords

    Carbon price; Stochastic equilibrium model; Climate finance; Carbon abatement; Environmental economics;
    All these keywords.

    JEL classification:

    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • P28 - Political Economy and Comparative Economic Systems - - Socialist and Transition Economies - - - Natural Resources; Environment
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:112:y:2022:i:c:s0140988322003140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.