Advanced Search
MyIDEAS: Login to save this article or follow this journal

Testing the predictive ability of technical analysis using a new stepwise test without data snooping bias

Contents:

Author Info

  • Hsu, Po-Hsuan
  • Hsu, Yu-Chin
  • Kuan, Chung-Ming

Abstract

In the finance literature, statistical inferences for large-scale testing problems usually suffer from data snooping bias. In this paper we extend the "superior predictive ability" (SPA) test of Hansen (2005, JBES) to a stepwise SPA test that can identify predictive models without potential data snooping bias. It is shown analytically and by simulations that the stepwise SPA test is more powerful than the stepwise Reality Check test of Romano and Wolf (2005, Econometrica). We then apply the proposed test to examine the predictive ability of technical trading rules based on the data of growth and emerging market indices and their exchange traded funds (ETFs). It is found that technical trading rules have significant predictive power for these markets, yet such evidence weakens after the ETFs are introduced.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.sciencedirect.com/science/article/B6VFG-4Y646JJ-1/2/1ed1c601329dafb4d2fa4d9d65f32398
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Elsevier in its journal Journal of Empirical Finance.

Volume (Year): 17 (2010)
Issue (Month): 3 (June)
Pages: 471-484

as in new window
Handle: RePEc:eee:empfin:v:17:y:2010:i:3:p:471-484

Contact details of provider:
Web page: http://www.elsevier.com/locate/jempfin

Related research

Keywords: Data snooping Exchange traded funds Reality check SPA test Stepwise test Technical trading rules;

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Sweeney, Richard J, 1986. " Beating the Foreign Exchange Market," Journal of Finance, American Finance Association, vol. 41(1), pages 163-82, March.
  2. Hong, Harrison & Torous, Walter & Valkanov, Rossen, 2007. "Do industries lead stock markets?," Journal of Financial Economics, Elsevier, vol. 83(2), pages 367-396, February.
  3. Kenneth A. Kavajecz, 2004. "Technical Analysis and Liquidity Provision," Review of Financial Studies, Society for Financial Studies, vol. 17(4), pages 1043-1071.
  4. Sweeney, Richard J., 1988. "Some New Filter Rule Tests: Methods and Results," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 23(03), pages 285-300, September.
  5. Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
  6. Brock, W. & Lakonishok, J. & Lebaron, B., 1991. "Simple Technical Trading Rules And The Stochastic Properties Of Stock Returns," Working papers 90-22, Wisconsin Madison - Social Systems.
  7. Joseph P. Romano & Michael Wolf, 2005. "Stepwise Multiple Testing as Formalized Data Snooping," Econometrica, Econometric Society, vol. 73(4), pages 1237-1282, 07.
  8. Andrew W. Lo & Harry Mamaysky & Jiang Wang, 2000. "Foundations of Technical Analysis: Computational Algorithms, Statistical Inference, and Empirical Implementation," NBER Working Papers 7613, National Bureau of Economic Research, Inc.
  9. Lo, Andrew W. (Andrew Wen-Chuan) & MacKinlay, Archie Craig, 1955-, 1989. "Data-snooping biases in tests of financial asset pricing models," Working papers 3020-89., Massachusetts Institute of Technology (MIT), Sloan School of Management.
  10. Chang, Eui Jung & Lima, Eduardo Jose Araujo & Tabak, Benjamin Miranda, 2004. "Testing for predictability in emerging equity markets," Emerging Markets Review, Elsevier, vol. 5(3), pages 295-316, September.
  11. Treynor, Jack L & Ferguson, Robert, 1985. " In Defense of Technical Analysis," Journal of Finance, American Finance Association, vol. 40(3), pages 757-73, July.
  12. Whitney K. Newey & Kenneth D. West, 1986. "A Simple, Positive Semi-Definite, Heteroskedasticity and AutocorrelationConsistent Covariance Matrix," NBER Technical Working Papers 0055, National Bureau of Economic Research, Inc.
  13. Blume, Lawrence & Easley, David & O'Hara, Maureen, 1994. " Market Statistics and Technical Analysis: The Role of Volume," Journal of Finance, American Finance Association, vol. 49(1), pages 153-81, March.
  14. Christopher J. Neely & Paul A. Weller & Joshua M. Ulrich, 2007. "The adaptive markets hypothesis: evidence from the foreign exchange market," Working Papers 2006-046, Federal Reserve Bank of St. Louis.
  15. Stephen J. Brown & William N. Goetzmann & Alok Kumar, 2004. "The Dow Theory: William Peter Hamilton's Track Record Re-considered," Yale School of Management Working Papers ysm30, Yale School of Management.
  16. Allan Timmermann & Halbert White & Ryan Sullivan, 1998. "Data-Snooping, Technical Trading, Rule Performance and the Bootstrap," FMG Discussion Papers dp303, Financial Markets Group.
  17. Asger Lunde & Peter R. Hansen, 2005. "A forecast comparison of volatility models: does anything beat a GARCH(1,1)?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 873-889.
  18. Halbert White, 2000. "A Reality Check for Data Snooping," Econometrica, Econometric Society, vol. 68(5), pages 1097-1126, September.
  19. Gencay, Ramazan, 1998. "The predictability of security returns with simple technical trading rules," Journal of Empirical Finance, Elsevier, vol. 5(4), pages 347-359, October.
  20. Allen, Franklin & Karjalainen, Risto, 1999. "Using genetic algorithms to find technical trading rules," Journal of Financial Economics, Elsevier, vol. 51(2), pages 245-271, February.
  21. Hegde, Shantaram P. & McDermott, John B., 2004. "The market liquidity of DIAMONDS, Q's, and their underlying stocks," Journal of Banking & Finance, Elsevier, vol. 28(5), pages 1043-1067, May.
  22. Bessembinder, Hendrik & Chan, Kalok, 1995. "The profitability of technical trading rules in the Asian stock markets," Pacific-Basin Finance Journal, Elsevier, vol. 3(2-3), pages 257-284, July.
  23. Ratner, Mitchell & Leal, Ricardo P. C., 1999. "Tests of technical trading strategies in the emerging equity markets of Latin America and Asia," Journal of Banking & Finance, Elsevier, vol. 23(12), pages 1887-1905, December.
  24. Po-Hsuan Hsu & Chung-Ming Kuan, 2005. "Reexamining the Profitability of Technical Analysis with Data Snooping Checks," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 3(4), pages 606-628.
  25. Mark J Ready, 2002. "Profits from Technical Trading Rules," Financial Management, Financial Management Association, vol. 31(3), Fall.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Pierre Bajgrowicz & Olivier Scaillet, 2007. "Technical Trading Revisited: False Discoveries, Persistence Tests, and Transaction Costs," Swiss Finance Institute Research Paper Series 08-05, Swiss Finance Institute, revised Jul 2009.
  2. Shynkevich, Andrei, 2013. "Time-series momentum as an intra- and inter-industry effect: Implications for market efficiency," Journal of Economics and Business, Elsevier, vol. 69(C), pages 64-85.
  3. Kuang, P. & Schröder, M. & Wang, Q., 2014. "Illusory profitability of technical analysis in emerging foreign exchange markets," International Journal of Forecasting, Elsevier, vol. 30(2), pages 192-205.
  4. Christopher J. Neely & Paul A. Weller, 2011. "Technical analysis in the foreign exchange market," Working Papers 2011-001, Federal Reserve Bank of St. Louis.
  5. Dan Anghel, 2013. "How Reliable is the Moving Average Crossover Rule for an Investor on the Romanian Stock Market?," The Review of Finance and Banking, Academia de Studii Economice din Bucuresti, Romania / Facultatea de Finante, Asigurari, Banci si Burse de Valori / Catedra de Finante, vol. 5(2), pages 089-115, December.
  6. Kao, Yi-Cheng & Kuan, Chung-Ming & Chen, Shikuan, 2013. "Testing the predictive power of the term structure without data snooping bias," Economics Letters, Elsevier, vol. 121(3), pages 546-549.
  7. Jesus Crespo Cuaresma & Mauro Costantini & Jaroslava Hlouskova, 2014. "Can Macroeconomists Get Rich Forecasting Exchange Rates?," Department of Economics Working Papers wuwp176, Vienna University of Economics, Department of Economics.
  8. Shynkevich, Andrei, 2012. "Performance of technical analysis in growth and small cap segments of the US equity market," Journal of Banking & Finance, Elsevier, vol. 36(1), pages 193-208.
  9. Andriosopoulos, Kostas & Doumpos, Michael & Papapostolou, Nikos C. & Pouliasis, Panos K., 2013. "Portfolio optimization and index tracking for the shipping stock and freight markets using evolutionary algorithms," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 52(C), pages 16-34.
  10. Christopher J. Bennett, 2009. "p-Value Adjustments for Asymptotic Control of the Generalized Familywise Error Rate," Vanderbilt University Department of Economics Working Papers 0905, Vanderbilt University Department of Economics.
  11. Isakov, Dusan & Marti, Didier, 2011. "Technical Analysis with a Long-Term Perspective: Trading Strategies and Market Timing Ability," FSES Working Papers 421, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
  12. repec:wyi:wpaper:002018 is not listed on IDEAS
  13. Shynkevich, Andrei, 2012. "Short-term predictability of equity returns along two style dimensions," Journal of Empirical Finance, Elsevier, vol. 19(5), pages 675-685.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:eee:empfin:v:17:y:2010:i:3:p:471-484. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.