IDEAS home Printed from https://ideas.repec.org/a/eee/ecmode/v51y2015icp1-12.html
   My bibliography  Save this article

The course of realized volatility in the LME non-ferrous metal market

Author

Listed:
  • Todorova, Neda

Abstract

This study analyzes the volatility of LME futures contracts on aluminum, copper, lead, nickel and zinc using high-frequency data. The dynamics of realized volatility is studied over the period from January 2004 to September 2012 and is shown to be well captured with a rolling HAR-GARCH model. An increasing importance of short-term volatility components is evident across all metals in the aftermath of the global financial crisis and the related sharp decline in industrial metal prices. The heavier impact of short-term volatility corresponds consistently to a decreasing persistence of the volatility of realized volatility. In terms of predictive accuracy, even though leverage effects or GARCH-terms related to the volatility of realized volatility are characterized for the most part by significant in-sample parameters, the plain HAR model cannot be consistently outperformed by explicitly accounting for these stylized facts.

Suggested Citation

  • Todorova, Neda, 2015. "The course of realized volatility in the LME non-ferrous metal market," Economic Modelling, Elsevier, vol. 51(C), pages 1-12.
  • Handle: RePEc:eee:ecmode:v:51:y:2015:i:c:p:1-12
    DOI: 10.1016/j.econmod.2015.07.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264999315001881
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econmod.2015.07.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Todorova, Neda & Worthington, Andrew & Souček, Michael, 2014. "Realized volatility spillovers in the non-ferrous metal futures market," Resources Policy, Elsevier, vol. 39(C), pages 21-31.
    2. Fulvio Corsi & Stefan Mittnik & Christian Pigorsch & Uta Pigorsch, 2008. "The Volatility of Realized Volatility," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 46-78.
    3. Humphreys, David, 2010. "The great metals boom: A retrospective," Resources Policy, Elsevier, vol. 35(1), pages 1-13, March.
    4. Martens, Martin & van Dijk, Dick, 2007. "Measuring volatility with the realized range," Journal of Econometrics, Elsevier, vol. 138(1), pages 181-207, May.
    5. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
    6. Fulvio Corsi & Roberto Renò, 2012. "Discrete-Time Volatility Forecasting With Persistent Leverage Effect and the Link With Continuous-Time Volatility Modeling," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 368-380, January.
    7. repec:dau:papers:123456789/4598 is not listed on IDEAS
    8. Donald Lien & Li Yang, 2009. "Intraday return and volatility spill‐over across international copper futures markets," International Journal of Managerial Finance, Emerald Group Publishing Limited, vol. 5(1), pages 135-149, February.
    9. Bubák, Vít & Kocenda, Evzen & Zikes, Filip, 2011. "Volatility transmission in emerging European foreign exchange markets," Journal of Banking & Finance, Elsevier, vol. 35(11), pages 2829-2841, November.
    10. Michael McAleer & Marcelo Medeiros, 2008. "Realized Volatility: A Review," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 10-45.
    11. Andersen, Torben G. & Dobrev, Dobrislav & Schaumburg, Ernst, 2012. "Jump-robust volatility estimation using nearest neighbor truncation," Journal of Econometrics, Elsevier, vol. 169(1), pages 75-93.
    12. Julien Chevallier & Benoît Sévi, 2011. "On the realized volatility of the ECX CO 2 emissions 2008 futures contract: distribution, dynamics and forecasting," Annals of Finance, Springer, vol. 7(1), pages 1-29, February.
    13. Liu, Lily Y. & Patton, Andrew J. & Sheppard, Kevin, 2015. "Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes," Journal of Econometrics, Elsevier, vol. 187(1), pages 293-311.
    14. Clinton Watkins & Michael McAleer, 2003. "Pricing of Non-ferrous Metals Futures on the London Metal Exchange," CIRJE F-Series CIRJE-F-213, CIRJE, Faculty of Economics, University of Tokyo.
    15. Clinton Watkins & Michael McAleer, 2004. "Econometric modelling of non‐ferrous metal prices," Journal of Economic Surveys, Wiley Blackwell, vol. 18(5), pages 651-701, December.
    16. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
    17. Souček, Michael & Todorova, Neda, 2013. "Realized volatility transmission between crude oil and equity futures markets: A multivariate HAR approach," Energy Economics, Elsevier, vol. 40(C), pages 586-597.
    18. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    19. Vít Bubák & Filip Žikeš, 2009. "Distribution and Dynamics of Central-European Exchange Rates: Evidence from Intraday Data," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 59(4), pages 334-359, Oktober.
    20. repec:ipg:wpaper:2014-053 is not listed on IDEAS
    21. Aruga, Kentaka & Managi, Shunsuke, 2011. "Price linkages in the copper futures, primary, and scrap markets," Resources, Conservation & Recycling, Elsevier, vol. 56(1), pages 43-47.
    22. Ole E. Barndorff-Nielsen, 2004. "Power and Bipower Variation with Stochastic Volatility and Jumps," Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 1-37.
    23. Watkins, Clinton & McAleer, Michael, 2008. "How has volatility in metals markets changed?," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 78(2), pages 237-249.
    24. Parkinson, Michael, 1980. "The Extreme Value Method for Estimating the Variance of the Rate of Return," The Journal of Business, University of Chicago Press, vol. 53(1), pages 61-65, January.
    25. Sévi, Benoît, 2014. "Forecasting the volatility of crude oil futures using intraday data," European Journal of Operational Research, Elsevier, vol. 235(3), pages 643-659.
    26. Shawkat M. Hammoudeh & Yuan Yuan & Michael McAleer, 2009. "Modeling Exchange Rate and Industrial Commodity Volatility Transmissions," "Marco Fanno" Working Papers 0096, Dipartimento di Scienze Economiche "Marco Fanno".
    27. Wu, Feng, 2011. "Testing for Volatility Changes in Grain Markets," 2011 Annual Meeting, July 24-26, 2011, Pittsburgh, Pennsylvania 103388, Agricultural and Applied Economics Association.
    28. Hammoudeh, Shawkat & Yuan, Yuan, 2008. "Metal volatility in presence of oil and interest rate shocks," Energy Economics, Elsevier, vol. 30(2), pages 606-620, March.
    29. A. Khalifa & S. Hammoudeh & E. Otranto & S. Ramchander, 2012. "Volatility Transmission across Currency, Commodity and Equity Markets under Multi-Chain Regime Switching: Implications for Hedging and Portfolio Allocation," Working Paper CRENoS 201214, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    30. Liu, Xiangli & Cheng, Siwei & Wang, Shouyang & Hong, Yongmiao & Li, Yi, 2008. "An empirical study on information spillover effects between the Chinese copper futures market and spot market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(4), pages 899-914.
    31. Hansen, Peter R. & Lunde, Asger, 2006. "Realized Variance and Market Microstructure Noise," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 127-161, April.
    32. Liu, Li & Wan, Jieqiu, 2012. "A study of Shanghai fuel oil futures price volatility based on high frequency data: Long-range dependence, modeling and forecasting," Economic Modelling, Elsevier, vol. 29(6), pages 2245-2253.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. João Henrique G. Mazzeu & Gloria González-Rivera & Esther Ruiz & Helena Veiga, 2020. "A bootstrap approach for generalized Autocontour testing Implications for VIX forecast densities," Econometric Reviews, Taylor & Francis Journals, vol. 39(10), pages 971-990, November.
    2. Dimitrios I. Vortelinos & Konstantinos Gkillas, 2018. "Intraday realised volatility forecasting and announcements," International Journal of Banking, Accounting and Finance, Inderscience Enterprises Ltd, vol. 9(1), pages 88-118.
    3. Lyócsa, Štefan & Molnár, Peter & Todorova, Neda, 2017. "Volatility forecasting of non-ferrous metal futures: Covariances, covariates or combinations?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 51(C), pages 228-247.
    4. Zhouwei Wang & Qicheng Zhao & Min Zhu & Tao Pang, 2020. "Jump Aggregation, Volatility Prediction, and Nonlinear Estimation of Banks’ Sustainability Risk," Sustainability, MDPI, vol. 12(21), pages 1-17, October.
    5. Gong, Xu & Xu, Jun & Liu, Tangyong & Zhou, Zicheng, 2022. "Dynamic volatility connectedness between industrial metal markets," The North American Journal of Economics and Finance, Elsevier, vol. 63(C).
    6. Luo, Jiawen & Ji, Qiang & Klein, Tony & Todorova, Neda & Zhang, Dayong, 2020. "On realized volatility of crude oil futures markets: Forecasting with exogenous predictors under structural breaks," Energy Economics, Elsevier, vol. 89(C).
    7. Su, Chi-Wei & Wang, Xiao-Qing & Zhu, Haotian & Tao, Ran & Moldovan, Nicoleta-Claudia & Lobonţ, Oana-Ramona, 2020. "Testing for multiple bubbles in the copper price: Periodically collapsing behavior," Resources Policy, Elsevier, vol. 65(C).
    8. Klein, Tony & Todorova, Neda, 2019. "Night Trading with Futures in China: The Case of Aluminum and Copper," QBS Working Paper Series 2019/06, Queen's University Belfast, Queen's Business School.
    9. Zhu, Xuehong & Zhang, Hongwei & Zhong, Meirui, 2017. "Volatility forecasting using high frequency data: The role of after-hours information and leverage effects," Resources Policy, Elsevier, vol. 54(C), pages 58-70.
    10. Narayan, Paresh Kumar & Sharma, Susan Sunila & Phan, Dinh Hoang Bach, 2016. "Asset price bubbles and economic welfare," International Review of Financial Analysis, Elsevier, vol. 44(C), pages 139-148.
    11. Díaz, Juan D. & Hansen, Erwin & Cabrera, Gabriel, 2021. "Economic drivers of commodity volatility: The case of copper," Resources Policy, Elsevier, vol. 73(C).
    12. Díaz, Juan D. & Hansen, Erwin & Cabrera, Gabriel, 2020. "A random walk through the trees: Forecasting copper prices using decision learning methods," Resources Policy, Elsevier, vol. 69(C).
    13. Klein, Tony & Todorova, Neda, 2021. "Night trading with futures in China: The case of Aluminum and Copper," Resources Policy, Elsevier, vol. 73(C).
    14. Omura, Akihiro & Li, Bin & Chung, Richard & Todorova, Neda, 2018. "Convenience yield, realised volatility and jumps: Evidence from non-ferrous metals," Economic Modelling, Elsevier, vol. 70(C), pages 496-510.
    15. Zhu, Xuehong & Zheng, Weihang & Zhang, Hongwei & Guo, Yaoqi, 2019. "Time-varying international market power for the Chinese iron ore markets," Resources Policy, Elsevier, vol. 64(C).
    16. Todorova, Neda & Clements, Adam E., 2018. "The volatility-volume relationship in the LME futures market for industrial metals," Resources Policy, Elsevier, vol. 58(C), pages 111-124.
    17. Ma, Richie Ruchuan & Xiong, Tao, 2021. "Price explosiveness in nonferrous metal futures markets," Economic Modelling, Elsevier, vol. 94(C), pages 75-90.
    18. Huang, Zhuo & Liu, Hao & Wang, Tianyi, 2016. "Modeling long memory volatility using realized measures of volatility: A realized HAR GARCH model," Economic Modelling, Elsevier, vol. 52(PB), pages 812-821.
    19. Shi, Wendong & Sun, Jingwei, 2016. "Aggregation and long-memory: An analysis based on the discrete Fourier transform," Economic Modelling, Elsevier, vol. 53(C), pages 470-476.
    20. Ciner, Cetin & Lucey, Brian & Yarovaya, Larisa, 2020. "Spillovers, integration and causality in LME non-ferrous metal markets," Journal of Commodity Markets, Elsevier, vol. 17(C).
    21. Xuan Yao & Xiaofeng Hui & Kaican Kang, 2021. "Can night trading sessions improve forecasting performance of gold futures' volatility in China?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 849-860, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Todorova, Neda & Worthington, Andrew & Souček, Michael, 2014. "Realized volatility spillovers in the non-ferrous metal futures market," Resources Policy, Elsevier, vol. 39(C), pages 21-31.
    2. Lyócsa, Štefan & Molnár, Peter & Todorova, Neda, 2017. "Volatility forecasting of non-ferrous metal futures: Covariances, covariates or combinations?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 51(C), pages 228-247.
    3. Neda Todorova & Michael Soucek & Eduardo Roca, 2015. "Volatility spillovers from international commodity markets to the Australian equity market," Discussion Papers in Finance finance:201505, Griffith University, Department of Accounting, Finance and Economics.
    4. Lyócsa, Štefan & Todorova, Neda & Výrost, Tomáš, 2021. "Predicting risk in energy markets: Low-frequency data still matter," Applied Energy, Elsevier, vol. 282(PA).
    5. Zhu, Xuehong & Zhang, Hongwei & Zhong, Meirui, 2017. "Volatility forecasting using high frequency data: The role of after-hours information and leverage effects," Resources Policy, Elsevier, vol. 54(C), pages 58-70.
    6. Klein, Tony & Todorova, Neda, 2021. "Night trading with futures in China: The case of Aluminum and Copper," Resources Policy, Elsevier, vol. 73(C).
    7. Dimos Kambouroudis & David McMillan & Katerina Tsakou, 2019. "Forecasting Realized Volatility: The role of implied volatility, leverage effect, overnight returns and volatility of realized volatility," Working Papers 2019-03, Swansea University, School of Management.
    8. Souček, Michael & Todorova, Neda, 2013. "Realized volatility transmission between crude oil and equity futures markets: A multivariate HAR approach," Energy Economics, Elsevier, vol. 40(C), pages 586-597.
    9. Alizadeh, Amir H. & Huang, Chih-Yueh & Marsh, Ian W., 2021. "Modelling the volatility of TOCOM energy futures: A regime switching realised volatility approach," Energy Economics, Elsevier, vol. 93(C).
    10. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss," Journal of International Money and Finance, Elsevier, vol. 104(C).
    11. Todorova, Neda & Souček, Michael, 2014. "The impact of trading volume, number of trades and overnight returns on forecasting the daily realized range," Economic Modelling, Elsevier, vol. 36(C), pages 332-340.
    12. Ehouman, Yao Axel, 2020. "Volatility transmission between oil prices and banks' stock prices as a new source of instability: Lessons from the United States experience," Economic Modelling, Elsevier, vol. 91(C), pages 198-217.
    13. Tseng, Tseng-Chan & Lee, Chien-Chiang & Chen, Mei-Ping, 2015. "Volatility forecast of country ETF: The sequential information arrival hypothesis," Economic Modelling, Elsevier, vol. 47(C), pages 228-234.
    14. Degiannakis, Stavros & Filis, George & Klein, Tony & Walther, Thomas, 2022. "Forecasting realized volatility of agricultural commodities," International Journal of Forecasting, Elsevier, vol. 38(1), pages 74-96.
    15. Chorro, Christophe & Ielpo, Florian & Sévi, Benoît, 2020. "The contribution of intraday jumps to forecasting the density of returns," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
    16. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Post-Print halshs-01442618, HAL.
    17. Deniz Erdemlioglu & Sébastien Laurent & Christopher J. Neely, 2013. "Econometric modeling of exchange rate volatility and jumps," Chapters, in: Adrian R. Bell & Chris Brooks & Marcel Prokopczuk (ed.), Handbook of Research Methods and Applications in Empirical Finance, chapter 16, pages 373-427, Edward Elgar Publishing.
    18. repec:uts:finphd:39 is not listed on IDEAS
    19. Štefan Lyócsa & Peter Molnár, 2016. "Volatility forecasting of strategically linked commodity ETFs: gold-silver," Quantitative Finance, Taylor & Francis Journals, vol. 16(12), pages 1809-1822, December.
    20. Donghua Wang & Yang Xin & Xiaohui Chang & Xingze Su, 2021. "Realized volatility forecasting and volatility spillovers: Evidence from Chinese non‐ferrous metals futures," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(2), pages 2713-2731, April.
    21. Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2014. "Realized volatility models and alternative Value-at-Risk prediction strategies," Economic Modelling, Elsevier, vol. 40(C), pages 101-116.

    More about this item

    Keywords

    Industrial metals; High-frequency data; HAR-GARCH model; Rolling estimation; Volatility forecasting;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecmode:v:51:y:2015:i:c:p:1-12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30411 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.