IDEAS home Printed from https://ideas.repec.org/p/zbw/qmsrps/201906.html
   My bibliography  Save this paper

Night Trading with Futures in China: The Case of Aluminum and Copper

Author

Listed:
  • Klein, Tony
  • Todorova, Neda

Abstract

We use high-frequency data to examine the effects of introducing an additional night trading session of four hours at the Shanghai Futures Exchange for Copper and Aluminum futures in December 2013. This additional trading session is shown to cause a structural break in the intraday behavior of prices. For Copper, the realized volatility of the regular session is endogenously determined while the night session is strongly driven by the immediately preceding realized volatility of the LME. In contrast, there is only little evidence for a directional spillover from the LME to SHFE for Aluminum futures. We find no indications that the SHFE is pulling volume from LME with the additional trading at night. Last, the now existing break between the day-time session and the night trading session is found to have significant informational content for Copper and Aluminum volatility and needs to be treated separately when extracting jump components from realized volatility

Suggested Citation

  • Klein, Tony & Todorova, Neda, 2019. "Night Trading with Futures in China: The Case of Aluminum and Copper," QBS Working Paper Series 2019/06, Queen's University Belfast, Queen's Business School.
  • Handle: RePEc:zbw:qmsrps:201906
    DOI: 10.2139/ssrn.3249598
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/271226/1/qms-rp2019-06.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.2139/ssrn.3249598?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Todorova, Neda & Worthington, Andrew & Souček, Michael, 2014. "Realized volatility spillovers in the non-ferrous metal futures market," Resources Policy, Elsevier, vol. 39(C), pages 21-31.
    2. Hung-Gay Fung & Liuqing Mai & Lin Zhao, 2016. "The effect of nighttime trading of futures markets on information flows: evidence from China," China Finance and Economic Review, Springer, vol. 4(1), pages 1-16, December.
    3. Andrew J. Patton & Kevin Sheppard, 2015. "Good Volatility, Bad Volatility: Signed Jumps and The Persistence of Volatility," The Review of Economics and Statistics, MIT Press, vol. 97(3), pages 683-697, July.
    4. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
    5. Fulvio Corsi & Roberto Renò, 2012. "Discrete-Time Volatility Forecasting With Persistent Leverage Effect and the Link With Continuous-Time Volatility Modeling," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 368-380, January.
    6. Todorova, Neda, 2015. "The course of realized volatility in the LME non-ferrous metal market," Economic Modelling, Elsevier, vol. 51(C), pages 1-12.
    7. Libo Yin & Liyan Han, 2013. "Exogenous Shocks and Information Transmission in Global Copper Futures Markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 33(8), pages 724-751, August.
    8. Andersen, Torben G. & Dobrev, Dobrislav & Schaumburg, Ernst, 2012. "Jump-robust volatility estimation using nearest neighbor truncation," Journal of Econometrics, Elsevier, vol. 169(1), pages 75-93.
    9. Yu Xin & Gongmeng Chen & Michael Firth, 2006. "The Efficiency of the Chinese Commodity Futures Markets: Development and Empirical Evidence," China & World Economy, Institute of World Economics and Politics, Chinese Academy of Social Sciences, vol. 14(2), pages 79-92, March.
    10. Degiannakis, Stavros & Filis, George, 2017. "Forecasting oil price realized volatility using information channels from other asset classes," Journal of International Money and Finance, Elsevier, vol. 76(C), pages 28-49.
    11. Andersen, Torben G. & Bollerslev, Tim & Huang, Xin, 2011. "A reduced form framework for modeling volatility of speculative prices based on realized variation measures," Journal of Econometrics, Elsevier, vol. 160(1), pages 176-189, January.
    12. Xindan Li & Bing Zhang, 2008. "Price linkages between Chinese and world copper futures markets," Psychometrika, Springer;The Psychometric Society, vol. 3(3), pages 451-461, September.
    13. Caihong Xu & Dong Zhang, 2019. "Market openness and market quality in gold markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(3), pages 384-401, March.
    14. Xin Huang & George Tauchen, 2005. "The Relative Contribution of Jumps to Total Price Variance," Journal of Financial Econometrics, Oxford University Press, vol. 3(4), pages 456-499.
    15. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
    16. Juan DU, 2018. "Empirical differences between the overnight and day trading hour returns," China Finance Review International, Emerald Group Publishing Limited, vol. 8(3), pages 315-331, May.
    17. Muzhao Jin & Youwei Li & Jianxin Wang & Yung Chiang Yang, 2018. "Price discovery in the Chinese gold market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(10), pages 1262-1281, October.
    18. Xu Gong & Boqiang Lin, 2018. "Structural breaks and volatility forecasting in the copper futures market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(3), pages 290-339, March.
    19. Zehai Li & Lawrence Huiyan Zhang, 2013. "An Empirical Study of International Linkages of the Shanghai Copper Futures Market," Chinese Economy, Taylor & Francis Journals, vol. 46(3), pages 61-74, May.
    20. Bertram, William K, 2004. "An empirical investigation of Australian Stock Exchange data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 341(C), pages 533-546.
    21. Hung‐Gay Fung & Qingfeng “Wilson” Liu & Yiuman Tse, 2010. "The information flow and market efficiency between the U.S. and Chinese aluminum and copper futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 30(12), pages 1192-1209, December.
    22. Claudia Wellenreuther & Jan Voelzke, 2019. "Speculation and volatility—A time‐varying approach applied on Chinese commodity futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(4), pages 405-417, April.
    23. Fung, Hung-Gay & Tse, Yiuman & Yau, Jot & Zhao, Lin, 2013. "A leader of the world commodity futures markets in the making? The case of China's commodity futures," International Review of Financial Analysis, Elsevier, vol. 27(C), pages 103-114.
    24. Liu, Qingfu & An, Yunbi, 2014. "Risk contributions of trading and non-trading hours: Evidence from Chinese commodity futures markets," Pacific-Basin Finance Journal, Elsevier, vol. 30(C), pages 17-29.
    25. Todorova, Neda & Souček, Michael, 2014. "Overnight information flow and realized volatility forecasting," Finance Research Letters, Elsevier, vol. 11(4), pages 420-428.
    26. Keqiang Hou & Luke Chan & Xin Zeng, 2015. "Information Linkages between Chinese and World Copper Futures Markets," Frontiers of Economics in China-Selected Publications from Chinese Universities, Higher Education Press, vol. 10(2), pages 272-300, June.
    27. Hongwei Zhang & Xuehong Zhu & Yaoqi Guo & Haibo Liu, 2018. "A separate reduced‐form volatility forecasting model for nonferrous metal market: Evidence from copper and aluminum," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 37(7), pages 754-766, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Klein, Tony & Todorova, Neda, 2021. "Night trading with futures in China: The case of Aluminum and Copper," Resources Policy, Elsevier, vol. 73(C).
    2. Lyócsa, Štefan & Molnár, Peter & Todorova, Neda, 2017. "Volatility forecasting of non-ferrous metal futures: Covariances, covariates or combinations?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 51(C), pages 228-247.
    3. Gong, Xu & Lin, Boqiang, 2018. "The incremental information content of investor fear gauge for volatility forecasting in the crude oil futures market," Energy Economics, Elsevier, vol. 74(C), pages 370-386.
    4. Yang, Cai & Gong, Xu & Zhang, Hongwei, 2019. "Volatility forecasting of crude oil futures: The role of investor sentiment and leverage effect," Resources Policy, Elsevier, vol. 61(C), pages 548-563.
    5. Liu, Yuanyuan & Niu, Zibo & Suleman, Muhammad Tahir & Yin, Libo & Zhang, Hongwei, 2022. "Forecasting the volatility of crude oil futures: The role of oil investor attention and its regime switching characteristics under a high-frequency framework," Energy, Elsevier, vol. 238(PA).
    6. Lyócsa, Štefan & Todorova, Neda, 2021. "What drives volatility of the U.S. oil and gas firms?," Energy Economics, Elsevier, vol. 100(C).
    7. Zhu, Xuehong & Zhang, Hongwei & Zhong, Meirui, 2017. "Volatility forecasting using high frequency data: The role of after-hours information and leverage effects," Resources Policy, Elsevier, vol. 54(C), pages 58-70.
    8. Lyócsa, Štefan & Molnár, Peter & Výrost, Tomáš, 2021. "Stock market volatility forecasting: Do we need high-frequency data?," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1092-1110.
    9. Luo, Jiawen & Klein, Tony & Ji, Qiang & Hou, Chenghan, 2022. "Forecasting realized volatility of agricultural commodity futures with infinite Hidden Markov HAR models," International Journal of Forecasting, Elsevier, vol. 38(1), pages 51-73.
    10. Mei, Dexiang & Ma, Feng & Liao, Yin & Wang, Lu, 2020. "Geopolitical risk uncertainty and oil future volatility: Evidence from MIDAS models," Energy Economics, Elsevier, vol. 86(C).
    11. Bee, Marco & Dupuis, Debbie J. & Trapin, Luca, 2016. "Realizing the extremes: Estimation of tail-risk measures from a high-frequency perspective," Journal of Empirical Finance, Elsevier, vol. 36(C), pages 86-99.
    12. Degiannakis, Stavros & Filis, George & Klein, Tony & Walther, Thomas, 2022. "Forecasting realized volatility of agricultural commodities," International Journal of Forecasting, Elsevier, vol. 38(1), pages 74-96.
    13. Liu, Yi & Liu, Huifang & Zhang, Lei, 2019. "Modeling and forecasting return jumps using realized variation measures," Economic Modelling, Elsevier, vol. 76(C), pages 63-80.
    14. Riza Demirer & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2022. "Risk aversion and the predictability of crude oil market volatility: A forecasting experiment with random forests," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 73(8), pages 1755-1767, August.
    15. Zhang, Yaojie & Ma, Feng & Wei, Yu, 2019. "Out-of-sample prediction of the oil futures market volatility: A comparison of new and traditional combination approaches," Energy Economics, Elsevier, vol. 81(C), pages 1109-1120.
    16. Degiannakis, Stavros & Filis, George, 2022. "Oil price volatility forecasts: What do investors need to know?," Journal of International Money and Finance, Elsevier, vol. 123(C).
    17. Lyócsa, Štefan & Todorova, Neda, 2020. "Trading and non-trading period realized market volatility: Does it matter for forecasting the volatility of US stocks?," International Journal of Forecasting, Elsevier, vol. 36(2), pages 628-645.
    18. Gong, Xu & Lin, Boqiang, 2019. "Modeling stock market volatility using new HAR-type models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 194-211.
    19. Xie, Nan & Wang, Zongrun & Chen, Sicen & Gong, Xu, 2019. "Forecasting downside risk in China’s stock market based on high-frequency data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 530-541.
    20. Özbekler, Ali Gencay & Kontonikas, Alexandros & Triantafyllou, Athanasios, 2021. "Volatility forecasting in European government bond markets," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1691-1709.

    More about this item

    JEL classification:

    • C2 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
    • Q02 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General - - - Commodity Market

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:qmsrps:201906. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/dequbuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.