Advanced Search
MyIDEAS: Login to save this article or follow this journal

A Simple Approximate Long-Memory Model of Realized Volatility

Contents:

Author Info

  • Fulvio Corsi

Abstract

The paper proposes an additive cascade model of volatility components defined over different time periods. This volatility cascade leads to a simple AR-type model in the realized volatility with the feature of considering different volatility components realized over different time horizons and thus termed Heterogeneous Autoregressive model of Realized Volatility (HAR-RV). In spite of the simplicity of its structure and the absence of true long-memory properties, simulation results show that the HAR-RV model successfully achieves the purpose of reproducing the main empirical features of financial returns (long memory, fat tails, and self-similarity) in a very tractable and parsimonious way. Moreover, empirical results show remarkably good forecasting performance. Copyright The Author 2009. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oupjournals.org, Oxford University Press.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://hdl.handle.net/10.1093/jjfinec/nbp001
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Society for Financial Econometrics in its journal Journal of Financial Econometrics.

Volume (Year): 7 (2009)
Issue (Month): 2 (Spring)
Pages: 174-196

as in new window
Handle: RePEc:oup:jfinec:v:7:y:2009:i:2:p:174-196

Contact details of provider:
Postal: Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK
Fax: 01865 267 985
Email:
Web page: http://jfec.oxfordjournals.org/
More information through EDIRC

Order Information:
Web: http://www.oup.co.uk/journals

Related research

Keywords:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Michael McAller & Marcelo C. Medeiros, 2007. "A multiple regime smooth transition heterogeneous autoregressive model for long memory and asymmetries," Textos para discussão 544, Department of Economics PUC-Rio (Brazil).
  2. Muller, Ulrich A. & Dacorogna, Michel M. & Dave, Rakhal D. & Olsen, Richard B. & Pictet, Olivier V. & von Weizsacker, Jacob E., 1997. "Volatilities of different time resolutions -- Analyzing the dynamics of market components," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 213-239, June.
  3. Fulvio Corsi & Davide Pirino & Roberto Reno, 2009. "Volatility Forecasting: The Jumps Do Matter," Global COE Hi-Stat Discussion Paper Series gd08-036, Institute of Economic Research, Hitotsubashi University.
  4. I.N. Lobato & N.E. Savin, 1996. "Real and Spurious Long Memory Properties of Stock Market Data," Econometrics 9605004, EconWPA, revised 26 Sep 1996.
  5. Fulvio Corsi & Stefan Mittnik & Christian Pigorsch & Uta Pigorsch, 2008. "The Volatility of Realized Volatility," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 46-78.
  6. Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "Predicting Volatility: Getting the Most out of Return Data Sampled at Different Frequencies," CIRANO Working Papers 2004s-19, CIRANO.
  7. Granger, C. W. J., 1980. "Long memory relationships and the aggregation of dynamic models," Journal of Econometrics, Elsevier, vol. 14(2), pages 227-238, October.
  8. Laurent E. Calvet, 2004. "How to Forecast Long-Run Volatility: Regime Switching and the Estimation of Multifractal Processes," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 2(1), pages 49-83.
  9. Engle, Robert F. & Gallo, Giampiero M., 2006. "A multiple indicators model for volatility using intra-daily data," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 3-27.
  10. Alfarano, Simone & Lux, Thomas, 2005. "A noise trader model as a generator of apparent financial power laws and long memory," Economics Working Papers 2005,13, Christian-Albrechts-University of Kiel, Department of Economics.
  11. Gregory H. Bauer & Keith Vorkink, 2007. "Multivariate Realized Stock Market Volatility," Working Papers 07-20, Bank of Canada.
  12. Aït-Sahalia, Yacine & Mancini, Loriano, 2008. "Out of sample forecasts of quadratic variation," Journal of Econometrics, Elsevier, vol. 147(1), pages 17-33, November.
  13. Fulvio Corsi & Francesco Audrino, 2008. "Modeling Tick-by-Tick Realized Correlations," University of St. Gallen Department of Economics working paper series 2008 2008-05, Department of Economics, University of St. Gallen.
  14. Gencay, Ramazan & Selcuk, Faruk & Whitcher, Brandon, 2004. "Information flow between volatilities across time scales," MPRA Paper 10355, University Library of Munich, Germany.
  15. Rossi, Alessandro & Gallo, Giampiero M., 2006. "Volatility estimation via hidden Markov models," Journal of Empirical Finance, Elsevier, vol. 13(2), pages 203-230, March.
  16. Laurent E. Calvet & Adlai J. Fisher, 2005. "Multifrequency News and Stock Returns," NBER Working Papers 11441, National Bureau of Economic Research, Inc.
  17. U. A. Muller & M. M. Dacorogna & R. D. Dave & O. V. Pictet & R. B. Olsen & J.R. Ward, . "Fractals and Intrinsic Time - a Challenge to Econometricians," Working Papers 1993-08-16, Olsen and Associates.
  18. Lux, T. & M. Marchesi, . "Scaling and Criticality in a Stochastic Multi-Agent Model of a Financial Market," Discussion Paper Serie B 438, University of Bonn, Germany, revised Jul 1998.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
This item has more than 25 citations. To prevent cluttering this page, these citations are listed on a separate page.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:oup:jfinec:v:7:y:2009:i:2:p:174-196. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Oxford University Press) or (Christopher F. Baum).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.