Advanced Search
MyIDEAS: Login to save this article or follow this journal

Are spectral estimators useful for long-run restrictions in SVARs?

Contents:

Author Info

  • Mertens, Elmar

Abstract

No, not really. In response to concerns about the reliability of SVARs, one proposal has been to combine OLS estimates of a VAR with non-parametric estimates of the spectral density. But as shown here, spectral estimators are no panacea for implementing long-run restrictions. They can suffer from small sample and misspecification biases just as VARs do. As a novelty, this paper uses a spectral factorization to ensure a correct representation of the data's variance. But this cannot overcome the basic small sample issues, which arise when trying to estimate long-run properties from relatively short samples of time-series data.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.sciencedirect.com/science/article/pii/S0165188912001431
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Elsevier in its journal Journal of Economic Dynamics and Control.

Volume (Year): 36 (2012)
Issue (Month): 12 ()
Pages: 1831-1844

as in new window
Handle: RePEc:eee:dyncon:v:36:y:2012:i:12:p:1831-1844

Contact details of provider:
Web page: http://www.elsevier.com/locate/jedc

Related research

Keywords: Structural VAR; Long-run identification; Non-parametric estimation; Spectral factorization;

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Lawrence J. Christiano & Martin Eichenbaum & Robert J. Vigfusson, 2003. "The response of hours to a technology shock: evidence based on direct measures of technology," International Finance Discussion Papers 790, Board of Governors of the Federal Reserve System (U.S.).
  2. Smets, Frank & Wouters, Rafael, 2007. "Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach," CEPR Discussion Papers 6112, C.E.P.R. Discussion Papers.
  3. V. V. Chari & Patrick J. Kehoe & Ellen R. McGrattan, 2006. "Business cycle accounting," Staff Report 328, Federal Reserve Bank of Minneapolis.
  4. Martial Dupaigne & Patrick Feve, 2009. "Technology shocks around the world," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 12(4), pages 592-607, October.
  5. Cogley, Timothy & Nason, James M, 1995. "Output Dynamics in Real-Business-Cycle Models," American Economic Review, American Economic Association, vol. 85(3), pages 492-511, June.
  6. Chari, V.V. & Kehoe, Patrick J. & McGrattan, Ellen R., 2008. "Are structural VARs with long-run restrictions useful in developing business cycle theory?," Journal of Monetary Economics, Elsevier, vol. 55(8), pages 1337-1352, November.
  7. Jesus Fernandez-Villaverde & Juan Rubio-Ramirez & Thomas J. Sargent, 2005. "A, B, C's (and D)'s for Understanding VARs," NBER Technical Working Papers 0308, National Bureau of Economic Research, Inc.
  8. Ravenna, Federico, 2007. "Vector autoregressions and reduced form representations of DSGE models," Journal of Monetary Economics, Elsevier, vol. 54(7), pages 2048-2064, October.
  9. Peter N. Ireland, 2002. "Technology Shocks in the New Keynesian Model," Boston College Working Papers in Economics 536, Boston College Department of Economics.
  10. Cooley, Thomas F. & Dwyer, Mark, 1998. "Business cycle analysis without much theory A look at structural VARs," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 57-88.
  11. Yixiao Sun & Peter C. B. Phillips & Sainan Jin, 2008. "Optimal Bandwidth Selection in Heteroskedasticity-Autocorrelation Robust Testing," Econometrica, Econometric Society, vol. 76(1), pages 175-194, 01.
  12. Elmar Mertens, 2008. "Are Spectral Estimators Useful for Implementing Long-Run Restrictions in SVARs?," Working Papers 08.01, Swiss National Bank, Study Center Gerzensee.
  13. Kascha, Christian & Mertens, Karel, 2009. "Business cycle analysis and VARMA models," Journal of Economic Dynamics and Control, Elsevier, vol. 33(2), pages 267-282, February.
  14. Olivier Jean Blanchard & Danny Quah, 1988. "The Dynamic Effects of Aggregate Demand and Supply Disturbances," NBER Working Papers 2737, National Bureau of Economic Research, Inc.
  15. Donald W.K. Andrews, 1988. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Cowles Foundation Discussion Papers 877R, Cowles Foundation for Research in Economics, Yale University, revised Jul 1989.
  16. Whitney K. Newey & Kenneth D. West, 1986. "A Simple, Positive Semi-Definite, Heteroskedasticity and AutocorrelationConsistent Covariance Matrix," NBER Technical Working Papers 0055, National Bureau of Economic Research, Inc.
  17. V. V. Chari & Patrick J. Kehoe & Ellen R. McGrattan, 2005. "A critique of structural VARs using real business cycle theory," Working Papers 631, Federal Reserve Bank of Minneapolis.
  18. Peter C. B. Phillips & Yixiao Sun & Sainan Jin, 2006. "Spectral Density Estimation And Robust Hypothesis Testing Using Steep Origin Kernels Without Truncation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 47(3), pages 837-894, 08.
  19. Lawrence J. Christiano & Martin Eichenbaum & Robert J. Vigfusson, 2005. "Alternative procedures for estimating vector autoregressions identified with long-run restrictions," International Finance Discussion Papers 842, Board of Governors of the Federal Reserve System (U.S.).
  20. Òscar Jordà, 2005. "Estimation and Inference of Impulse Responses by Local Projections," American Economic Review, American Economic Association, vol. 95(1), pages 161-182, March.
  21. Kenneth D. West & Whitney K. Newey, 1995. "Automatic Lag Selection in Covariance Matrix Estimation," NBER Technical Working Papers 0144, National Bureau of Economic Research, Inc.
  22. Christopher J. Erceg & Luca Guerrieri, 2004. "Can Long-Run Restrictions Identify Technology Shocks?," Computing in Economics and Finance 2004 3, Society for Computational Economics.
  23. Andrews, Donald W K & Monahan, J Christopher, 1992. "An Improved Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimator," Econometrica, Econometric Society, vol. 60(4), pages 953-66, July.
  24. Arthur F. Burns & Wesley C. Mitchell, 1946. "Measuring Business Cycles," NBER Books, National Bureau of Economic Research, Inc, number burn46-1, October.
  25. Lawrence J. Christiano & Martin Eichenbaum & Robert Vigfusson, 2006. "Assessing structural VARs," International Finance Discussion Papers 866, Board of Governors of the Federal Reserve System (U.S.).
    • Lawrence J. Christiano & Martin Eichenbaum & Robert Vigfusson, 2007. "Assessing Structural VARs," NBER Chapters, in: NBER Macroeconomics Annual 2006, Volume 21, pages 1-106 National Bureau of Economic Research, Inc.
  26. Li, Lei M., 2005. "Factorization of moving-average spectral densities by state-space representations and stacking," Journal of Multivariate Analysis, Elsevier, vol. 96(2), pages 425-438, October.
  27. Lars Peter Hansen & Thomas J. Sargent, 2007. "Introduction to Robustness," Introductory Chapters, Princeton University Press.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:eee:dyncon:v:36:y:2012:i:12:p:1831-1844. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.