Advanced Search
MyIDEAS: Login to save this paper or follow this series

On Size and Power of Heteroscedasticity and Autocorrelation Robust Tests

Contents:

Author Info

  • Preinerstorfer, David
  • Pötscher, Benedikt M.

Abstract

Testing restrictions on regression coefficients in linear models often requires correcting the conventional F-test for potential heteroscedasticity or autocorrelation amongst the disturbances, leading to so-called heteroskedasticity and autocorrelation robust test procedures. These procedures have been developed with the purpose of attenuating size distortions and power deficiencies present for the uncorrected F-test. We develop a general theory to establish positive as well as negative finite-sample results concerning the size and power properties of a large class of heteroskedasticity and autocorrelation robust tests. Using these results we show that nonparametrically as well as parametrically corrected F-type tests in time series regression models with stationary disturbances have either size equal to one or nuisance-infimal power equal to zero under very weak assumptions on the covariance model and under generic conditions on the design matrix. In addition we suggest an adjustment procedure based on artificial regressors. This adjustment resolves the problem in many cases in that the so-adjusted tests do not suffer from size distortions. At the same time their power function is bounded away from zero. As a second application we discuss the case of heteroscedastic disturbances.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://mpra.ub.uni-muenchen.de/45675/
File Function: original version
Download Restriction: no

File URL: http://mpra.ub.uni-muenchen.de/57184/
File Function: revised version
Download Restriction: no

Bibliographic Info

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 45675.

as in new window
Length:
Date of creation: Jan 2013
Date of revision:
Handle: RePEc:pra:mprapa:45675

Contact details of provider:
Postal: Schackstr. 4, D-80539 Munich, Germany
Phone: +49-(0)89-2180-2219
Fax: +49-(0)89-2180-3900
Web page: http://mpra.ub.uni-muenchen.de
More information through EDIRC

Related research

Keywords: Size distortion; power deficiency; invariance; robustness; autocorrelation; heteroscedasticity; HAC; fixed-bandwidth; long-run-variance; feasible GLS;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Vogelsang, Timothy J., 2012. "Heteroskedasticity, autocorrelation, and spatial correlation robust inference in linear panel models with fixed-effects," Journal of Econometrics, Elsevier, vol. 166(2), pages 303-319.
  2. Sun, Yixiao & Phillips, Peter C.B. & Jin, Sainan, 2011. "Power Maximization And Size Control In Heteroskedasticity And Autocorrelation Robust Tests With Exponentiated Kernels," Econometric Theory, Cambridge University Press, vol. 27(06), pages 1320-1368, December.
  3. Kenneth D. West & Whitney K. Newey, 1995. "Automatic Lag Selection in Covariance Matrix Estimation," NBER Technical Working Papers 0144, National Bureau of Economic Research, Inc.
  4. White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-38, May.
  5. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-58, May.
  6. DUFOUR, Jean-Marie, 2003. "Identification, Weak Instruments and Statistical Inference in Econometrics," Cahiers de recherche 10-2003, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
  7. Peter C. B. Phillips & Yixiao Sun & Sainan Jin, 2006. "Spectral Density Estimation And Robust Hypothesis Testing Using Steep Origin Kernels Without Truncation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 47(3), pages 837-894, 08.
  8. Banerjee, Anurag N. & Magnus, Jan R., 2000. "On the sensitivity of the usual t- and F-tests to covariance misspecification," Journal of Econometrics, Elsevier, vol. 95(1), pages 157-176, March.
  9. Kramer, W., 1989. "On the robustness of the F-test to autocorrelation among disturbances," Economics Letters, Elsevier, vol. 30(1), pages 37-40.
  10. Jean-Marie Dufour, 2003. "Identification, Weak Instruments and Statistical Inference in Econometrics," CIRANO Working Papers 2003s-49, CIRANO.
  11. Carlos Velasco & Peter M. Robinson, 2001. "Edgeworth expansions for spectral density estimates and studentized sample mean," LSE Research Online Documents on Economics 315, London School of Economics and Political Science, LSE Library.
  12. Nicholas M. Kiefer & Timothy J. Vogelsang & Helle Bunzel, 2000. "Simple Robust Testing of Regression Hypotheses," Econometrica, Econometric Society, vol. 68(3), pages 695-714, May.
  13. Cribari-Neto, Francisco, 2004. "Asymptotic inference under heteroskedasticity of unknown form," Computational Statistics & Data Analysis, Elsevier, vol. 45(2), pages 215-233, March.
  14. Magee, Lonnie, 1989. "An Edgeworth Test Size Correction for the Linear Model with AR(1) Errors," Econometrica, Econometric Society, vol. 57(3), pages 661-74, May.
  15. Kelejian, Harry H. & Prucha, Ingmar R., 2007. "HAC estimation in a spatial framework," Journal of Econometrics, Elsevier, vol. 140(1), pages 131-154, September.
  16. Donald W.K. Andrews & Christopher J. Monahan, 1990. "An Improved Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimator," Cowles Foundation Discussion Papers 942, Cowles Foundation for Research in Economics, Yale University.
  17. Kiefer, Nicholas M. & Vogelsang, Timothy J., 2002. "Heteroskedasticity-Autocorrelation Robust Testing Using Bandwidth Equal To Sample Size," Econometric Theory, Cambridge University Press, vol. 18(06), pages 1350-1366, December.
  18. Politis, Dimitris N., 2011. "Higher-Order Accurate, Positive Semidefinite Estimation Of Large-Sample Covariance And Spectral Density Matrices," Econometric Theory, Cambridge University Press, vol. 27(04), pages 703-744, August.
  19. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 33(1), pages 125-132.
  20. Keener, Robert W. & Kmenta, Jan & Weber, Neville C., 1991. "Estimation of the Covariance Matrix of the Least-Squares Regression Coefficients When the Disturbance Covariance Matrix Is of Unknown Form," Econometric Theory, Cambridge University Press, vol. 7(01), pages 22-45, March.
  21. Perron Pierre & Ren Linxia, 2011. "On the Irrelevance of Impossibility Theorems: The Case of the Long-run Variance," Journal of Time Series Econometrics, De Gruyter, vol. 3(3), pages 1-34, October.
  22. Phillips, Peter C.B., 2005. "Hac Estimation By Automated Regression," Econometric Theory, Cambridge University Press, vol. 21(01), pages 116-142, February.
  23. Jean-Marie Dufour, 1997. "Some Impossibility Theorems in Econometrics with Applications to Structural and Dynamic Models," Econometrica, Econometric Society, vol. 65(6), pages 1365-1388, November.
  24. Park, Rolla Edward & Mitchell, Bridger M., 1980. "Estimating the autocorrelated error model with trended data," Journal of Econometrics, Elsevier, vol. 13(2), pages 185-201, June.
  25. Nicholas M. Kiefer & Timothy J. Vogelsang, 2002. "Heteroskedasticity-Autocorrelation Robust Standard Errors Using The Bartlett Kernel Without Truncation," Econometrica, Econometric Society, vol. 70(5), pages 2093-2095, September.
  26. Yixiao Sun & Peter C. B. Phillips & Sainan Jin, 2008. "Optimal Bandwidth Selection in Heteroskedasticity-Autocorrelation Robust Testing," Econometrica, Econometric Society, vol. 76(1), pages 175-194, 01.
  27. Benedikt M. Pötscher, 1999. "Lower Risk Bounds and Properties of Confidence Sets For Ill-Posed Estimation Problems with Applications to Spectral Density and Persistence Estimation, Unit Roots,and Estimation of Long Memory Paramet," Vienna Economics Papers 0202, University of Vienna, Department of Economics.
  28. Kelejian, Harry H. & Prucha, Ingmar R., 2010. "Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances," Journal of Econometrics, Elsevier, vol. 157(1), pages 53-67, July.
  29. Martellosio, Federico, 2010. "Power Properties Of Invariant Tests For Spatial Autocorrelation In Linear Regression," Econometric Theory, Cambridge University Press, vol. 26(01), pages 152-186, February.
  30. Michael Jansson, 2004. "The Error in Rejection Probability of Simple Autocorrelation Robust Tests," Econometrica, Econometric Society, vol. 72(3), pages 937-946, 05.
  31. Jansson, Michael, 2002. "Consistent Covariance Matrix Estimation For Linear Processes," Econometric Theory, Cambridge University Press, vol. 18(06), pages 1449-1459, December.
  32. Hansen, Bruce E, 1992. "Consistent Covariance Matrix Estimation for Dependent Heterogeneous Processes," Econometrica, Econometric Society, vol. 60(4), pages 967-72, July.
  33. Ibragimov, Rustam & Müller, Ulrich K., 2010. "t-Statistic Based Correlation and Heterogeneity Robust Inference," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(4), pages 453-468.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:45675. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekkehart Schlicht).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.