IDEAS home Printed from https://ideas.repec.org/a/eee/dyncon/v122y2021ics0165188920302001.html
   My bibliography  Save this article

Market stability with machine learning agents

Author

Listed:
  • Georges, Christophre
  • Pereira, Javier

Abstract

We consider the effect of adaptive model selection and regularization by agents on price volatility and market stability in a simple agent-based model of a financial market. The agents base their trading behavior on forecasts of future returns, which they update adaptively and asynchronously through a process of model selection, estimation, and prediction. The addition of model selection and regularization methods to the traders’ learning algorithm is shown to reduce but not eliminate overfitting and resulting excess volatility. Our results suggest that even a high degree of attention to overfitting on the part of traders who are engaged in data mining is unlikely to entirely eliminate destabilizing speculation. They also accord well with the empirical “sparse signals” and “pockets of predictability” findings of Chinco et al. (2019) and Farmer et al. (2019).

Suggested Citation

  • Georges, Christophre & Pereira, Javier, 2021. "Market stability with machine learning agents," Journal of Economic Dynamics and Control, Elsevier, vol. 122(C).
  • Handle: RePEc:eee:dyncon:v:122:y:2021:i:c:s0165188920302001
    DOI: 10.1016/j.jedc.2020.104032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165188920302001
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jedc.2020.104032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lux, Thomas & Alfarano, Simone, 2016. "Financial power laws: Empirical evidence, models, and mechanisms," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 3-18.
    2. In-Koo Cho & Kenneth Kasa, 2015. "Learning and Model Validation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 82(1), pages 45-82.
    3. Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2021. "Economic Predictions With Big Data: The Illusion of Sparsity," Econometrica, Econometric Society, vol. 89(5), pages 2409-2437, September.
    4. Giovanni Dosi & Mauro Napoletano & Andrea Roventini & Joseph E. Stiglitz & Tania Treibich, 2020. "Rational Heuristics? Expectations And Behaviors In Evolving Economies With Heterogeneous Interacting Agents," Economic Inquiry, Western Economic Association International, vol. 58(3), pages 1487-1516, July.
    5. Roberto Dieci & Xue-Zhong He, 2018. "Heterogeneous Agent Models in Finance," Research Paper Series 389, Quantitative Finance Research Centre, University of Technology, Sydney.
    6. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," Review of Finance, European Finance Association, vol. 33(5), pages 2223-2273.
    7. Xavier Gabaix, 2014. "A Sparsity-Based Model of Bounded Rationality," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 129(4), pages 1661-1710.
    8. Guanhao Feng & Stefano Giglio & Dacheng Xiu, 2020. "Taming the Factor Zoo: A Test of New Factors," Journal of Finance, American Finance Association, vol. 75(3), pages 1327-1370, June.
    9. James Bullard & George W. Evans & Seppo Honkapohja, 2008. "Monetary Policy, Judgment, and Near-Rational Exuberance," American Economic Review, American Economic Association, vol. 98(3), pages 1163-1177, June.
    10. William A. Branch & George W. Evans, 2011. "Learning about Risk and Return: A Simple Model of Bubbles and Crashes," American Economic Journal: Macroeconomics, American Economic Association, vol. 3(3), pages 159-191, July.
    11. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    12. Beunza, Daniel & Stark, David, 2012. "From dissonance to resonance: cognitive interdependence in quantitative finance," LSE Research Online Documents on Economics 45604, London School of Economics and Political Science, LSE Library.
    13. Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2014. "High-Dimensional Methods and Inference on Structural and Treatment Effects," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 29-50, Spring.
    14. Hommes, Cars & Zhu, Mei, 2014. "Behavioral learning equilibria," Journal of Economic Theory, Elsevier, vol. 150(C), pages 778-814.
    15. Georges, Christophre, 2015. "Risk preference and stability under learning," Economics Letters, Elsevier, vol. 132(C), pages 105-108.
    16. Kozak, Serhiy & Nagel, Stefan & Santosh, Shrihari, 2020. "Shrinking the cross-section," Journal of Financial Economics, Elsevier, vol. 135(2), pages 271-292.
    17. Honkapohja, Seppo & Mitra, Kaushik, 2003. "Learning with bounded memory in stochastic models," Journal of Economic Dynamics and Control, Elsevier, vol. 27(8), pages 1437-1457, June.
    18. Bracke, Philippe & Datta, Anupam & Jung, Carsten & Sen, Shayak, 2019. "Machine learning explainability in finance: an application to default risk analysis," Bank of England working papers 816, Bank of England.
    19. Lukas Ryll & Sebastian Seidens, 2019. "Evaluating the Performance of Machine Learning Algorithms in Financial Market Forecasting: A Comprehensive Survey," Papers 1906.07786, arXiv.org, revised Jul 2019.
    20. Huisman, Ronald, et al, 2001. "Tail-Index Estimates in Small Samples," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(2), pages 208-216, April.
    21. George William Evans, 2001. "Expectations in Macroeconomics Adaptive versus Eductive Learning," Revue économique, Presses de Sciences-Po, vol. 52(3), pages 573-582.
    22. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
    23. Robert J. Shiller, 2003. "From Efficient Markets Theory to Behavioral Finance," Journal of Economic Perspectives, American Economic Association, vol. 17(1), pages 83-104, Winter.
    24. Enriqueta Aragones & Itzhak Gilboa & Andrew Postlewaite & David Schmeidler, 2012. "Fact-Free Learning," World Scientific Book Chapters, in: Case-Based Predictions An Axiomatic Approach to Prediction, Classification and Statistical Learning, chapter 8, pages 185-210, World Scientific Publishing Co. Pte. Ltd..
    25. Jean-Michel Grandmont, 1998. "Expectations Formation and Stability of Large Socioeconomic Systems," Econometrica, Econometric Society, vol. 66(4), pages 741-782, July.
    26. Jonathan Brogaard & Terrence Hendershott & Ryan Riordan, 2014. "High-Frequency Trading and Price Discovery," The Review of Financial Studies, Society for Financial Studies, vol. 27(8), pages 2267-2306.
    27. Mikhail Anufriev & Cars Hommes, 2012. "Evolutionary Selection of Individual Expectations and Aggregate Outcomes in Asset Pricing Experiments," American Economic Journal: Microeconomics, American Economic Association, vol. 4(4), pages 35-64, November.
    28. Alex Chinco & Adam D. Clark‐Joseph & Mao Ye, 2019. "Sparse Signals in the Cross‐Section of Returns," Journal of Finance, American Finance Association, vol. 74(1), pages 449-492, February.
    29. Alberto Abadie & Maximilian Kasy, 2019. "Choosing Among Regularized Estimators in Empirical Economics: The Risk of Machine Learning," The Review of Economics and Statistics, MIT Press, vol. 101(5), pages 743-762, December.
    30. Andrew W. Lo & Harry Mamaysky & Jiang Wang, 2000. "Foundations of Technical Analysis: Computational Algorithms, Statistical Inference, and Empirical Implementation," Journal of Finance, American Finance Association, vol. 55(4), pages 1705-1765, August.
    31. Sendhil Mullainathan & Jann Spiess, 2017. "Machine Learning: An Applied Econometric Approach," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 87-106, Spring.
    32. Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2018. "The M4 Competition: Results, findings, conclusion and way forward," International Journal of Forecasting, Elsevier, vol. 34(4), pages 802-808.
    33. Branch, William A. & Evans, George W., 2006. "Intrinsic heterogeneity in expectation formation," Journal of Economic Theory, Elsevier, vol. 127(1), pages 264-295, March.
    34. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    35. Georges, Christophre, 2008. "Bounded memory, overparameterized forecast rules, and instability," Economics Letters, Elsevier, vol. 98(2), pages 129-135, February.
    36. Alain P. Chaboud & Benjamin Chiquoine & Erik Hjalmarsson & Clara Vega, 2014. "Rise of the Machines: Algorithmic Trading in the Foreign Exchange Market," Journal of Finance, American Finance Association, vol. 69(5), pages 2045-2084, October.
    37. Georges, Christophre, 2008. "Staggered updating in an artificial financial market," Journal of Economic Dynamics and Control, Elsevier, vol. 32(9), pages 2809-2825, September.
    38. Hal R. Varian, 2014. "Big Data: New Tricks for Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 3-28, Spring.
    39. LeBaron, Blake, 2012. "Heterogeneous gain learning and the dynamics of asset prices," Journal of Economic Behavior & Organization, Elsevier, vol. 83(3), pages 424-445.
    40. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lansing, Kevin J. & LeRoy, Stephen F. & Ma, Jun, 2022. "Examining the sources of excess return predictability: Stochastic volatility or market inefficiency?," Journal of Economic Behavior & Organization, Elsevier, vol. 197(C), pages 50-72.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hoang, Daniel & Wiegratz, Kevin, 2022. "Machine learning methods in finance: Recent applications and prospects," Working Paper Series in Economics 158, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
    2. Georges, Christophre, 2008. "Staggered updating in an artificial financial market," Journal of Economic Dynamics and Control, Elsevier, vol. 32(9), pages 2809-2825, September.
    3. Georges, Christophre, 2015. "Risk preference and stability under learning," Economics Letters, Elsevier, vol. 132(C), pages 105-108.
    4. Troy Tassier, 2013. "Handbook of Research on Complexity, by J. Barkley Rosser, Jr. and Edward Elgar," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 39(1), pages 132-133.
    5. Georges, Christophre & Wallace, John C., 2009. "Learning Dynamics And Nonlinear Misspecification In An Artificial Financial Market," Macroeconomic Dynamics, Cambridge University Press, vol. 13(5), pages 625-655, November.
    6. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    7. Antonio Doria, Francisco, 2011. "J.B. Rosser Jr. , Handbook of Research on Complexity, Edward Elgar, Cheltenham, UK--Northampton, MA, USA (2009) 436 + viii pp., index, ISBN 978 1 84542 089 5 (cased)," Journal of Economic Behavior & Organization, Elsevier, vol. 78(1-2), pages 196-204, April.
    8. Rubesam, Alexandre, 2022. "Machine learning portfolios with equal risk contributions: Evidence from the Brazilian market," Emerging Markets Review, Elsevier, vol. 51(PB).
    9. Doron Avramov & Guy Kaplanski & Avanidhar Subrahmanyam, 2022. "Postfundamentals Price Drift in Capital Markets: A Regression Regularization Perspective," Management Science, INFORMS, vol. 68(10), pages 7658-7681, October.
    10. Hommes, Cars, 2018. "Behavioral & experimental macroeconomics and policy analysis: a complex systems approach," Working Paper Series 2201, European Central Bank.
    11. Smith, Simon C., 2022. "Time-variation, multiple testing, and the factor zoo," International Review of Financial Analysis, Elsevier, vol. 84(C).
    12. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    13. Schmitt, Noemi & Westerhoff, Frank, 2021. "Trend followers, contrarians and fundamentalists: Explaining the dynamics of financial markets," Journal of Economic Behavior & Organization, Elsevier, vol. 192(C), pages 117-136.
    14. Pan, Shuiyang & Long, Suwan(Cheng) & Wang, Yiming & Xie, Ying, 2023. "Nonlinear asset pricing in Chinese stock market: A deep learning approach," International Review of Financial Analysis, Elsevier, vol. 87(C).
    15. Kristof Lommers & Ouns El Harzli & Jack Kim, 2021. "Confronting Machine Learning With Financial Research," Papers 2103.00366, arXiv.org, revised Mar 2021.
    16. Chiarella, Carl & He, Xue-Zhong & Zwinkels, Remco C.J., 2014. "Heterogeneous expectations in asset pricing: Empirical evidence from the S&P500," Journal of Economic Behavior & Organization, Elsevier, vol. 105(C), pages 1-16.
    17. Yan, Jingda & Yu, Jialin, 2023. "Cross-stock momentum and factor momentum," Journal of Financial Economics, Elsevier, vol. 150(2).
    18. Colak, Gonul & Fu, Mengchuan & Hasan, Iftekhar, 2022. "On modeling IPO failure risk," Economic Modelling, Elsevier, vol. 109(C).
    19. Audzei, Volha & Slobodyan, Sergey, 2022. "Sparse restricted perceptions equilibrium," Journal of Economic Dynamics and Control, Elsevier, vol. 139(C).
    20. Chen, Ding & Guo, Biao & Zhou, Guofu, 2023. "Firm fundamentals and the cross-section of implied volatility shapes," Journal of Financial Markets, Elsevier, vol. 63(C).

    More about this item

    Keywords

    Expectations; Machine learning; LASSO; Agent-based modeling; Asset prices; Volatility;
    All these keywords.

    JEL classification:

    • D84 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Expectations; Speculations
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
    • D53 - Microeconomics - - General Equilibrium and Disequilibrium - - - Financial Markets
    • E44 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Financial Markets and the Macroeconomy
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G40 - Financial Economics - - Behavioral Finance - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:dyncon:v:122:y:2021:i:c:s0165188920302001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jedc .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.