IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v96y2012icp261-271.html
   My bibliography  Save this article

Does generation form influence environmental efficiency performance? An analysis of China’s power system

Author

Listed:
  • Bai-Chen, Xie
  • Ying, Fan
  • Qian-Qian, Qu

Abstract

To achieve sustainable development, the focus on power system efficiency should move from analysis of just economic benefits to environmental efficiency studies that assess both economic benefits and carbon emissions. Therefore, balancing the development of different generation forms is a critical field in improving environmental efficiency. Here we classify the 30 provincial administrative regions (PARs) in China into three categories according to the proportion of thermal power ratio. We then use a two-stage environmental network DEA model to compare their efficiency performance. Analysis of the evaluation results leads to the following conclusions. Generation forms have a significant influence on the environmental efficiency performance of power systems, but the differences vary greatly according to the power supply and demand situation. The policy to incentivize clean energy development has achieved its objective in the generation division and further policy reforms should be extended to the grid division. A more flexible power development plan should be implemented according to regional resources endowment for better planning of power system development on a nationwide basis.

Suggested Citation

  • Bai-Chen, Xie & Ying, Fan & Qian-Qian, Qu, 2012. "Does generation form influence environmental efficiency performance? An analysis of China’s power system," Applied Energy, Elsevier, vol. 96(C), pages 261-271.
  • Handle: RePEc:eee:appene:v:96:y:2012:i:c:p:261-271
    DOI: 10.1016/j.apenergy.2011.11.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261911007082
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2011.11.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fare, Rolf & Grosskopf, Shawna, 1996. "Productivity and intermediate products: A frontier approach," Economics Letters, Elsevier, vol. 50(1), pages 65-70, January.
    2. Rolf Färe & Shawna Grosskopf & Gerald Whittaker, 2014. "Network DEA II," International Series in Operations Research & Management Science, in: Wade D. Cook & Joe Zhu (ed.), Data Envelopment Analysis, edition 127, chapter 0, pages 307-327, Springer.
    3. Barros, Carlos Pestana, 2008. "Efficiency analysis of hydroelectric generating plants: A case study for Portugal," Energy Economics, Elsevier, vol. 30(1), pages 59-75, January.
    4. Yu, William & Jamasb, Tooraj & Pollitt, Michael, 2009. "Does weather explain cost and quality performance? An analysis of UK electricity distribution companies," Energy Policy, Elsevier, vol. 37(11), pages 4177-4188, November.
    5. Vaninsky, Alexander, 2006. "Efficiency of electric power generation in the United States: Analysis and forecast based on data envelopment analysis," Energy Economics, Elsevier, vol. 28(3), pages 326-338, May.
    6. Bagdadioglu, Necmiddin & Waddams Price, Catherine M. & Weyman-Jones, Thomas G., 1996. "Efficiency and ownership in electricity distribution: A non-parametric model of the Turkish experience," Energy Economics, Elsevier, vol. 18(1-2), pages 1-23, April.
    7. Thomas Sexton & Herbert Lewis, 2003. "Two-Stage DEA: An Application to Major League Baseball," Journal of Productivity Analysis, Springer, vol. 19(2), pages 227-249, April.
    8. Sözen, Adnan & Alp, Ihsan & Özdemir, Adnan, 2010. "Assessment of operational and environmental performance of the thermal power plants in Turkey by using data envelopment analysis," Energy Policy, Elsevier, vol. 38(10), pages 6194-6203, October.
    9. Tsutsui, Miki & Goto, Mika, 2009. "A multi-division efficiency evaluation of U.S. electric power companies using a weighted slacks-based measure," Socio-Economic Planning Sciences, Elsevier, vol. 43(3), pages 201-208, September.
    10. Steenhof, Paul A., 2007. "Decomposition for emission baseline setting in China's electricity sector," Energy Policy, Elsevier, vol. 35(1), pages 280-294, January.
    11. Jiro Nemoto & Mika Goto, 2003. "Measurement of Dynamic Efficiency in Production: An Application of Data Envelopment Analysis to Japanese Electric Utilities," Journal of Productivity Analysis, Springer, vol. 19(2), pages 191-210, April.
    12. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    13. Lothgren, Mickael & Tambour, Magnus, 1999. "Productivity and customer satisfaction in Swedish pharmacies: A DEA network model," European Journal of Operational Research, Elsevier, vol. 115(3), pages 449-458, June.
    14. Kao, Chiang & Hwang, Shiuh-Nan, 2008. "Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan," European Journal of Operational Research, Elsevier, vol. 185(1), pages 418-429, February.
    15. Sueyoshi, Toshiyuki & Goto, Mika, 2011. "Operational synergy in the US electric utility industry under an influence of deregulation policy: A linkage to financial performance and corporate value," Energy Policy, Elsevier, vol. 39(2), pages 699-713, February.
    16. Athanassopoulos, Antreas D. & Lambroukos, Nikos & Seiford, Lawrence, 1999. "Data envelopment scenario analysis for setting targets to electricity generating plants," European Journal of Operational Research, Elsevier, vol. 115(3), pages 413-428, June.
    17. Sueyoshi, Toshiyuki & Goto, Mika, 2011. "DEA approach for unified efficiency measurement: Assessment of Japanese fossil fuel power generation," Energy Economics, Elsevier, vol. 33(2), pages 292-303, March.
    18. Zhu, Lei & Fan, Ying, 2010. "Optimization of China's generating portfolio and policy implications based on portfolio theory," Energy, Elsevier, vol. 35(3), pages 1391-1402.
    19. Fleishman, Rachel & Alexander, Rob & Bretschneider, Stuart & Popp, David, 2009. "Does regulation stimulate productivity? The effect of air quality policies on the efficiency of US power plants," Energy Policy, Elsevier, vol. 37(11), pages 4574-4582, November.
    20. Fukuyama, Hirofumi & Weber, William L., 2010. "A slacks-based inefficiency measure for a two-stage system with bad outputs," Omega, Elsevier, vol. 38(5), pages 398-409, October.
    21. Toru Hattori & Tooraj Jamasb & Michael Pollitt, 2005. "Electricity Distribution in the UK and Japan: A Comparative Efficiency Analysis 1985-1998," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 23-48.
    22. Nielsen, Steffen & Sorknæs, Peter & Østergaard, Poul Alberg, 2011. "Electricity market auction settings in a future Danish electricity system with a high penetration of renewable energy sources – A comparison of marginal pricing and pay-as-bid," Energy, Elsevier, vol. 36(7), pages 4434-4444.
    23. Yaisawarng, Suthathip & Klein, J Douglass, 1994. "The Effects of Sulfur Dioxide Controls on Productivity Change in the U.S. Electric Power Industry," The Review of Economics and Statistics, MIT Press, vol. 76(3), pages 447-460, August.
    24. Weyman-Jones, Thomas G., 1991. "Productive efficiency in a regulated industry : The area electricity boards of England and Wales," Energy Economics, Elsevier, vol. 13(2), pages 116-122, April.
    25. Sueyoshi, Toshiyuki & Goto, Mika & Ueno, Takahiro, 2010. "Performance analysis of US coal-fired power plants by measuring three DEA efficiencies," Energy Policy, Elsevier, vol. 38(4), pages 1675-1688, April.
    26. Lawrence M. Seiford & Joe Zhu, 1999. "Profitability and Marketability of the Top 55 U.S. Commercial Banks," Management Science, INFORMS, vol. 45(9), pages 1270-1288, September.
    27. Pérez-Reyes, Raúl & Tovar, Beatriz, 2009. "Measuring efficiency and productivity change (PTF) in the Peruvian electricity distribution companies after reforms," Energy Policy, Elsevier, vol. 37(6), pages 2249-2261, June.
    28. Arocena, Pablo, 2008. "Cost and quality gains from diversification and vertical integration in the electricity industry: A DEA approach," Energy Economics, Elsevier, vol. 30(1), pages 39-58, January.
    29. Fare, Rolf & Grosskopf, Shawna & Logan, James, 1983. "The relative efficiency of Illinois electric utilities," Resources and Energy, Elsevier, vol. 5(4), pages 349-367, December.
    30. Førsund, Finn R. & Kittelsen, Sverre A. C., 1998. "Productivity development of Norwegian electricity distribution utilities," Resource and Energy Economics, Elsevier, vol. 20(3), pages 207-224, September.
    31. Guo, Xiao-Dan & Zhu, Lei & Fan, Ying & Xie, Bai-Chen, 2011. "Evaluation of potential reductions in carbon emissions in Chinese provinces based on environmental DEA," Energy Policy, Elsevier, vol. 39(5), pages 2352-2360, May.
    32. Cook, Wade D. & Liang, Liang & Zhu, Joe, 2010. "Measuring performance of two-stage network structures by DEA: A review and future perspective," Omega, Elsevier, vol. 38(6), pages 423-430, December.
    33. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "Measuring environmental performance under different environmental DEA technologies," Energy Economics, Elsevier, vol. 30(1), pages 1-14, January.
    34. Yunos, Jamaluddin Mohd & Hawdon, David, 1997. "The efficiency of the National Electricity Board in Malaysia: An intercountry comparison using DEA," Energy Economics, Elsevier, vol. 19(2), pages 255-269, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bi, Gong-Bing & Song, Wen & Zhou, P. & Liang, Liang, 2014. "Does environmental regulation affect energy efficiency in China's thermal power generation? Empirical evidence from a slacks-based DEA model," Energy Policy, Elsevier, vol. 66(C), pages 537-546.
    2. Maria Elisabete Neves & Carla Henriques & João Vilas, 2021. "Financial performance assessment of electricity companies: evidence from Portugal," Operational Research, Springer, vol. 21(4), pages 2809-2857, December.
    3. Yang, Yongping & Wang, Ligang & Dong, Changqing & Xu, Gang & Morosuk, Tatiana & Tsatsaronis, George, 2013. "Comprehensive exergy-based evaluation and parametric study of a coal-fired ultra-supercritical power plant," Applied Energy, Elsevier, vol. 112(C), pages 1087-1099.
    4. Li, Jianglong & Lin, Boqiang, 2017. "Ecological total-factor energy efficiency of China's heavy and light industries: Which performs better?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 83-94.
    5. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Jusoh, Ahmad & Khoshnoudi, Masoumeh, 2017. "A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1298-1322.
    6. Xiao, Huijuan & Wang, Daoping & Qi, Yu & Shao, Shuai & Zhou, Ya & Shan, Yuli, 2021. "The governance-production nexus of eco-efficiency in Chinese resource-based cities: A two-stage network DEA approach," Energy Economics, Elsevier, vol. 101(C).
    7. Iftikhar, Yaser & Wang, Zhaohua & Zhang, Bin & Wang, Bo, 2018. "Energy and CO2 emissions efficiency of major economies: A network DEA approach," Energy, Elsevier, vol. 147(C), pages 197-207.
    8. Monastyrenko, Evgenii, 2017. "Eco-efficiency outcomes of mergers and acquisitions in the European electricity industry," Energy Policy, Elsevier, vol. 107(C), pages 258-277.
    9. Li, Yi & Liu, Tianya & Xu, Jinpeng, 2023. "Analyzing the economic, social, and technological determinants of renewable and nonrenewable electricity production in China: Findings from time series models," Energy, Elsevier, vol. 282(C).
    10. Sun, Jiasen & Li, Guo & Wang, Zhaohua, 2018. "Optimizing China’s energy consumption structure under energy and carbon constraints," Structural Change and Economic Dynamics, Elsevier, vol. 47(C), pages 57-72.
    11. Alizadeh, Reza & Gharizadeh Beiragh, Ramin & Soltanisehat, Leili & Soltanzadeh, Elham & Lund, Peter D., 2020. "Performance evaluation of complex electricity generation systems: A dynamic network-based data envelopment analysis approach," Energy Economics, Elsevier, vol. 91(C).
    12. Lynes, Melissa & Brewer, Brady & Featherstone, Allen, 2016. "Greenhouse Gas Emissions Effect on Cost Efficiencies of U.S. Electric Power Plants," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235890, Agricultural and Applied Economics Association.
    13. Yunfei An & Dequn Zhou & Qunwei Wang, 2022. "Carbon emission reduction potential and its influencing factors in China’s coal-fired power industry: a cost optimization and decomposition analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 3619-3639, March.
    14. Tao Li & Yunfen Guo & Liqi Yi & Tian Gao, 2022. "Environmental Performance Evaluation of New Type Thermal Power Enterprises Considering Carbon Peak and Neutrality," Sustainability, MDPI, vol. 14(7), pages 1-18, March.
    15. Zhang, Yixiang & Wang, Zhaohua & Zhou, Guanghui, 2013. "Determinants and implications of employee electricity saving habit: An empirical study in China," Applied Energy, Elsevier, vol. 112(C), pages 1529-1535.
    16. Tenente, Marcos & Henriques, Carla & da Silva, Patrícia Pereira, 2020. "Eco-efficiency assessment of the electricity sector: Evidence from 28 European Union countries," Economic Analysis and Policy, Elsevier, vol. 66(C), pages 293-314.
    17. Wang, Yi-Shu & Xie, Bai-Chen & Shang, Li-Feng & Li, Wen-Hua, 2013. "Measures to improve the performance of China’s thermal power industry in view of cost efficiency," Applied Energy, Elsevier, vol. 112(C), pages 1078-1086.
    18. Li, Ke & Lin, Boqiang, 2016. "Impact of energy conservation policies on the green productivity in China’s manufacturing sector: Evidence from a three-stage DEA model," Applied Energy, Elsevier, vol. 168(C), pages 351-363.
    19. Zhen Liu & Trong Lam Vu & Thi Thu Hien Phan & Thanh Quang Ngo & Nguyen Ho Viet Anh & Ahmad Romadhoni Surya Putra, 2022. "Financial inclusion and green economic performance for energy efficiency finance," Economic Change and Restructuring, Springer, vol. 55(4), pages 2359-2389, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    2. Kao, Chiang, 2014. "Network data envelopment analysis: A review," European Journal of Operational Research, Elsevier, vol. 239(1), pages 1-16.
    3. S P Santos & C A F Amado & J R Rosado, 2011. "Formative evaluation of electricity distribution utilities using data envelopment analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(7), pages 1298-1319, July.
    4. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "A survey of data envelopment analysis in energy and environmental studies," European Journal of Operational Research, Elsevier, vol. 189(1), pages 1-18, August.
    5. Huang, Chin-wei & Ho, Foo Nin & Chiu, Yung-ho, 2014. "Measurement of tourist hotels׳ productive efficiency, occupancy, and catering service effectiveness using a modified two-stage DEA model in Taiwan," Omega, Elsevier, vol. 48(C), pages 49-59.
    6. Halkos, George & Tzeremes, Nickolaos & Kourtzidis, Stavros, 2011. "The use of supply chain DEA models in operations management: A survey," MPRA Paper 31846, University Library of Munich, Germany.
    7. Pombo, Carlos & Taborda, Rodrigo, 2006. "Performance and efficiency in Colombia's power distribution system: Effects of the 1994 reform," Energy Economics, Elsevier, vol. 28(3), pages 339-369, May.
    8. Fukuyama, Hirofumi & Mirdehghan, S.M., 2012. "Identifying the efficiency status in network DEA," European Journal of Operational Research, Elsevier, vol. 220(1), pages 85-92.
    9. Akther, Syed & Fukuyama, Hirofumi & Weber, William L., 2013. "Estimating two-stage network Slacks-based inefficiency: An application to Bangladesh banking," Omega, Elsevier, vol. 41(1), pages 88-96.
    10. Ogunrinde, Olawale & Shittu, Ekundayo, 2023. "Efficiency and productivity of renewable energy technologies: Evidence from U.S. investor-owned utilities across regional markets," Utilities Policy, Elsevier, vol. 82(C).
    11. Lampe, Hannes W. & Hilgers, Dennis, 2015. "Trajectories of efficiency measurement: A bibliometric analysis of DEA and SFA," European Journal of Operational Research, Elsevier, vol. 240(1), pages 1-21.
    12. Fukuyama, Hirofumi & Weber, William L., 2010. "A slacks-based inefficiency measure for a two-stage system with bad outputs," Omega, Elsevier, vol. 38(5), pages 398-409, October.
    13. Lorenzo Castelli & Raffaele Pesenti & Walter Ukovich, 2010. "A classification of DEA models when the internal structure of the Decision Making Units is considered," Annals of Operations Research, Springer, vol. 173(1), pages 207-235, January.
    14. Mirdehghan, S. Morteza & Fukuyama, Hirofumi, 2016. "Pareto–Koopmans efficiency and network DEA," Omega, Elsevier, vol. 61(C), pages 78-88.
    15. AGRELL, Per & HATAMI-MARBINI, Adel, 2011. "Frontier-based performance analysis models for supply chain management; state of the art and research directions," LIDAM Discussion Papers CORE 2011069, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    16. Feng Li & Qingyuan Zhu & Jun Zhuang, 2018. "Analysis of fire protection efficiency in the United States: a two-stage DEA-based approach," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(1), pages 23-68, January.
    17. Alizadeh, Reza & Gharizadeh Beiragh, Ramin & Soltanisehat, Leili & Soltanzadeh, Elham & Lund, Peter D., 2020. "Performance evaluation of complex electricity generation systems: A dynamic network-based data envelopment analysis approach," Energy Economics, Elsevier, vol. 91(C).
    18. Li, Yongjun & Chen, Yao & Liang, Liang & Xie, Jianhui, 2012. "DEA models for extended two-stage network structures," Omega, Elsevier, vol. 40(5), pages 611-618.
    19. Wang, Yi-Shu & Xie, Bai-Chen & Shang, Li-Feng & Li, Wen-Hua, 2013. "Measures to improve the performance of China’s thermal power industry in view of cost efficiency," Applied Energy, Elsevier, vol. 112(C), pages 1078-1086.
    20. San Cristóbal, José Ramón, 2011. "A multi criteria data envelopment analysis model to evaluate the efficiency of the Renewable Energy technologies," Renewable Energy, Elsevier, vol. 36(10), pages 2742-2746.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:96:y:2012:i:c:p:261-271. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.