IDEAS home Printed from https://ideas.repec.org/r/taf/quantf/v5y2005i5p489-501.html
   My bibliography  Save this item

Empirical estimation of tail dependence using copulas: application to Asian markets

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Dominique Guegan, 2011. "Contagion Between the Financial Sphere and the Real Economy. Parametric and non Parametric Tools: A Comparison," PSE-Ecole d'économie de Paris (Postprint) halshs-00185373, HAL.
  2. Fousekis, Panos, 2017. "Price co-movement and the hedger's value-at-risk in the futures markets for coffee," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 0(Issue 01), January.
  3. Dominique Guegan, 2007. "Global and local stationary modelling in finance: theory and empirical evidence," Post-Print halshs-00187875, HAL.
  4. Dominique Guegan, 2010. "Value at Risk Computation in a Non-Stationary Setting," Post-Print halshs-00511995, HAL.
  5. Dominique Guegan, 2005. "How can we Define the Concept of Long Memory? An Econometric Survey," Econometric Reviews, Taylor & Francis Journals, vol. 24(2), pages 113-149.
  6. D. Guegan & J. Zhang, 2010. "Change analysis of a dynamic copula for measuring dependence in multivariate financial data," Quantitative Finance, Taylor & Francis Journals, vol. 10(4), pages 421-430.
  7. Dominique Guegan & Jing Zhang, 2010. "Change analysis of a dynamic copula for measuring dependence in multivariate financial data," Post-Print halshs-00368334, HAL.
  8. Bedendo, Mascia & Campolongo, Francesca & Joossens, Elisabeth & Saita, Francesco, 2010. "Pricing multiasset equity options: How relevant is the dependence function?," Journal of Banking & Finance, Elsevier, vol. 34(4), pages 788-801, April.
  9. Dominique Guegan, 2011. "Contagion Between the Financial Sphere and the Real Economy. Parametric and non Parametric Tools: A Comparison," Post-Print halshs-00185373, HAL.
  10. Sheng Fang & Paul Egan, 2021. "Tail dependence between oil prices and China's A‐shares: Evidence from firm‐level data," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 1469-1487, January.
  11. Aloui, Riadh & Aïssa, Mohamed Safouane Ben & Nguyen, Duc Khuong, 2011. "Global financial crisis, extreme interdependences, and contagion effects: The role of economic structure?," Journal of Banking & Finance, Elsevier, vol. 35(1), pages 130-141, January.
  12. Fousekis, Panos & Grigoriadis, Vasilis, 2017. "Price co-movement and the crack spread in the US futures markets," Journal of Commodity Markets, Elsevier, vol. 7(C), pages 57-71.
  13. Garcia, René & Tsafack, Georges, 2011. "Dependence structure and extreme comovements in international equity and bond markets," Journal of Banking & Finance, Elsevier, vol. 35(8), pages 1954-1970, August.
  14. Dominique Guegan & Jing Zhang, 2010. "Change analysis of a dynamic copula for measuring dependence in multivariate financial data," PSE-Ecole d'économie de Paris (Postprint) halshs-00368334, HAL.
  15. Cyril Caillault & Dominique Guegan, 2009. "Forecasting VaR and Expected Shortfall using Dynamical Systems: A Risk Management Strategy," PSE-Ecole d'économie de Paris (Postprint) halshs-00375765, HAL.
  16. Dominique Guegan, 2005. "How can we Define the Concept of Long Memory? An Econometric Survey," Econometric Reviews, Taylor & Francis Journals, vol. 24(2), pages 113-149.
  17. Dominique Guegan, 2010. "Value at Risk Computation in a Non-Stationary Setting," PSE-Ecole d'économie de Paris (Postprint) halshs-00511995, HAL.
  18. Qing Xu & Xiao-Ming Li, 2009. "Estimation of dynamic asymmetric tail dependences: an empirical study on Asian developed futures markets," Applied Financial Economics, Taylor & Francis Journals, vol. 19(4), pages 273-290.
  19. Cyril Caillault, Dominique Guégan, 2009. "Forecasting VaR and Expected Shortfall Using Dynamical Systems: A Risk Management Strategy," Frontiers in Finance and Economics, SKEMA Business School, vol. 6(1), pages 26-50, April.
  20. Karim, Sitara & Lucey, Brian M. & Naeem, Muhammad Abubakr & Vigne, Samuel A., 2023. "The dark side of Bitcoin: Do Emerging Asian Islamic markets help subdue the ethical risk?," Emerging Markets Review, Elsevier, vol. 54(C).
  21. Cubillos-Rocha, Juan S. & Gomez-Gonzalez, Jose E. & Melo-Velandia, Luis F., 2019. "Detecting exchange rate contagion using copula functions," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 13-22.
  22. Yali Dou & Haiyan Liu & Georgios Aivaliotis, 2019. "Dynamic Dependence Modeling in financial time series," Papers 1908.05130, arXiv.org.
  23. Dominique Guegan, 2008. "Non-stationarity and meta-distribution," Post-Print halshs-00270708, HAL.
  24. Trottini, Mario & Muralidhar, Krish & Sarathy, Rathindra, 2011. "Maintaining tail dependence in data shuffling using t copula," Statistics & Probability Letters, Elsevier, vol. 81(3), pages 420-428, March.
  25. Dominique Guegan & Jing Zhang, 2006. "Change analysis of dynamic copula for measuring dependence in multivariate financial data," Post-Print halshs-00189141, HAL.
  26. Dominique Guégan, 2009. "A Meta-Distribution for Non-Stationary Samples," CREATES Research Papers 2009-24, Department of Economics and Business Economics, Aarhus University.
  27. Carlos Díaz-Caro & Jorge Onrubia, 2019. "How Did the ‘Dualization’ of the Spanish Income Tax Affect Horizontal Equity? Assessing its Impact Using Copula Functions," Hacienda Pública Española / Review of Public Economics, IEF, vol. 231(4), pages 81-124, December.
  28. repec:mth:ijafr8:v:9:y:2019:i:1:p:414-431 is not listed on IDEAS
  29. Herrera, R. & Eichler, S., 2011. "Extreme dependence with asymmetric thresholds: Evidence for the European Monetary Union," Journal of Banking & Finance, Elsevier, vol. 35(11), pages 2916-2930, November.
  30. Matthieu Garcin & Maxime L. D. Nicolas, 2024. "Nonparametric estimator of the tail dependence coefficient: balancing bias and variance," Statistical Papers, Springer, vol. 65(8), pages 4875-4913, October.
  31. César Garcia-Gomez & Ana Pérez & Mercedes Prieto-Alaiz, 2022. "The evolution of poverty in the EU-28: a further look based on multivariate tail dependence," Working Papers 605, ECINEQ, Society for the Study of Economic Inequality.
  32. Nikoloulopoulos, Aristidis K. & Joe, Harry & Li, Haijun, 2012. "Vine copulas with asymmetric tail dependence and applications to financial return data," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3659-3673.
  33. Bing-Yue Liu & Qiang Ji & Ying Fan, 2017. "A new time-varying optimal copula model identifying the dependence across markets," Quantitative Finance, Taylor & Francis Journals, vol. 17(3), pages 437-453, March.
  34. Matthieu Garcin & Maxime L. D. Nicolas, 2021. "Nonparametric estimator of the tail dependence coefficient: balancing bias and variance," Papers 2111.11128, arXiv.org, revised Jul 2023.
  35. Arismendi-Zambrano, Juan & Belitsky, Vladimir & Sobreiro, Vinicius Amorim & Kimura, Herbert, 2022. "The implications of dependence, tail dependence, and bounds’ measures for counterparty credit risk pricing," Journal of Financial Stability, Elsevier, vol. 58(C).
  36. Gijbels Irène & Matterne Margot, 2021. "Study of partial and average conditional Kendall’s tau," Dependence Modeling, De Gruyter, vol. 9(1), pages 82-120, January.
  37. Dominique Guegan, 2007. "La persistance dans les marchés financiers," Post-Print halshs-00179269, HAL.
  38. Prayer M. Rikhotso & Beatrice D. Simo-Kengne, 2022. "Dependence Structures between Sovereign Credit Default Swaps and Global Risk Factors in BRICS Countries," JRFM, MDPI, vol. 15(3), pages 1-22, February.
  39. Yuri Salazar Flores & Adán Díaz-Hernández, 2021. "Counterdiagonal/nonpositive tail dependence in Vine copula constructions: application to portfolio management," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(2), pages 375-407, June.
  40. Cyril Caillault & Dominique Guegan, 2009. "Forecasting VaR and Expected Shortfall using Dynamical Systems: A Risk Management Strategy," Post-Print halshs-00375765, HAL.
  41. Bücher, Axel & Jäschke, Stefan & Wied, Dominik, 2015. "Nonparametric tests for constant tail dependence with an application to energy and finance," Journal of Econometrics, Elsevier, vol. 187(1), pages 154-168.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.