IDEAS home Printed from https://ideas.repec.org/r/kap/transp/v46y2019i5d10.1007_s11116-018-9913-4.html
   My bibliography  Save this item

The potential of mobility as a service bundles as a mobility management tool

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Basu, Rounaq & Ferreira, Joseph, 2021. "Sustainable mobility in auto-dominated Metro Boston: Challenges and opportunities post-COVID-19," Transport Policy, Elsevier, vol. 103(C), pages 197-210.
  2. Iria Lopez-Carreiro & Andres Monzon & Elena Lopez, 2023. "MaaS Implications in the Smart City: A Multi-Stakeholder Approach," Sustainability, MDPI, vol. 15(14), pages 1-27, July.
  3. Ho, Chinh Q. & Hensher, David A. & Reck, Daniel J. & Lorimer, Sam & Lu, Ivy, 2021. "MaaS bundle design and implementation: Lessons from the Sydney MaaS trial," Transportation Research Part A: Policy and Practice, Elsevier, vol. 149(C), pages 339-376.
  4. Dadashzadeh, Nima & Woods, Lee & Ouelhadj, Djamila & Thomopoulos, Nikolas & Kamargianni, Maria & Antoniou, Constantinos, 2022. "Mobility as a Service Inclusion Index (MaaSINI): Evaluation of inclusivity in MaaS systems and policy recommendations," Transport Policy, Elsevier, vol. 127(C), pages 191-202.
  5. Nicos Komninos & Christina Kakderi & Luca Mora & Anastasia Panori & Elena Sefertzi, 2022. "Towards High Impact Smart Cities: a Universal Architecture Based on Connected Intelligence Spaces," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 13(2), pages 1169-1197, June.
  6. Antonella Franco & Antonino Vitetta, 2023. "Preference Model in the Context of Mobility as a Service: A Pilot Case Study," Sustainability, MDPI, vol. 15(6), pages 1-14, March.
  7. Timmer, Sebastian & Bösehans, Gustav & Henkel, Sven, 2023. "Behavioural norms or personal gains? – An empirical analysis of commuters‘ intention to switch to multimodal mobility behaviour," Transportation Research Part A: Policy and Practice, Elsevier, vol. 170(C).
  8. Zhiyuan Yu & Doudou Jin & Xiaoxiao Song & Chao Zhai & Desheng Wang, 2020. "Internet of Vehicle Empowered Mobile Media Scenarios: In-Vehicle Infotainment Solutions for the Mobility as a Service (MaaS)," Sustainability, MDPI, vol. 12(18), pages 1-21, September.
  9. Ho, Chinh Q., 2022. "Can MaaS change users’ travel behaviour to deliver commercial and societal outcomes?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 76-97.
  10. Chen, Ching-Fu & Fu, Chiang & Chen, Yu-Chun, 2023. "Exploring tourist preference for Mobility-as-a-Service (MaaS) – A latent class choice approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 174(C).
  11. Tsouros, Ioannis & Tsirimpa, Athena & Pagoni, Ioanna & Polydoropoulou, Amalia, 2021. "MaaS users: Who they are and how much they are willing-to-pay," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 470-480.
  12. Maria Vittoria Corazza & Giordano Carassiti, 2021. "Investigating Maturity Requirements to Operate Mobility as a Service: The Rome Case," Sustainability, MDPI, vol. 13(15), pages 1-31, July.
  13. Sujae Kim & Sangho Choo & Sungtaek Choi & Hyangsook Lee, 2021. "What Factors Affect Commuters’ Utility of Choosing Mobility as a Service? An Empirical Evidence from Seoul," Sustainability, MDPI, vol. 13(16), pages 1-15, August.
  14. Kriswardhana, Willy & Esztergár-Kiss, Domokos, 2023. "Exploring the aspects of MaaS adoption based on college students’ preferences," Transport Policy, Elsevier, vol. 136(C), pages 113-125.
  15. Kim, Seheon & Rasouli, Soora, 2022. "The influence of latent lifestyle on acceptance of Mobility-as-a-Service (MaaS): A hierarchical latent variable and latent class approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 304-319.
  16. Comello, Stephen & Glenk, Gunther & Reichelstein, Stefan, 2020. "Cost-efficient transition to clean energy transportation services," ZEW Discussion Papers 20-054, ZEW - Leibniz Centre for European Economic Research.
  17. Theodoros P. Pantelidis & Joseph Y. J. Chow & Saeid Rasulkhani, 2019. "A many-to-many assignment game and stable outcome algorithm to evaluate collaborative Mobility-as-a-Service platforms," Papers 1911.04435, arXiv.org, revised Jun 2020.
  18. Hasselwander, Marc & Bigotte, Joao F. & Antunes, Antonio P. & Sigua, Ricardo G., 2022. "Towards sustainable transport in developing countries: Preliminary findings on the demand for mobility-as-a-service (MaaS) in Metro Manila," Transportation Research Part A: Policy and Practice, Elsevier, vol. 155(C), pages 501-518.
  19. Cai, Zeen & Mo, Dong & Geng, Maosi & Tang, Wei & Chen, Xiqun Michael, 2023. "Integrating ride-sourcing with electric vehicle charging under mixed fleets and differentiated services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 169(C).
  20. Jaroslav Mašek & Vladimíra Štefancová & Jaroslav Mazanec & Petra Juránková, 2023. "The Classification of Application Users Supporting and Facilitating Travel Mobility Using Two-Step Cluster Analysis," Mathematics, MDPI, vol. 11(9), pages 1-16, May.
  21. Timo Liljamo & Heikki Liimatainen & Markus Pöllänen & Riku Viri, 2021. "The Effects of Mobility as a Service and Autonomous Vehicles on People’s Willingness to Own a Car in the Future," Sustainability, MDPI, vol. 13(4), pages 1-28, February.
  22. Reck, Daniel J. & Hensher, David A. & Ho, Chinh Q., 2020. "MaaS bundle design," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 485-501.
  23. Ding, Xiaoshu & Qi, Qi & Jian, Sisi & Yang, Hai, 2023. "Mechanism design for Mobility-as-a-Service platform considering travelers’ strategic behavior and multidimensional requirements," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 1-30.
  24. Pantelidis, Theodoros P. & Chow, Joseph Y.J. & Rasulkhani, Saeid, 2020. "A many-to-many assignment game and stable outcome algorithm to evaluate collaborative mobility-as-a-service platforms," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 79-100.
  25. Alexandros Nikitas & Kalliopi Michalakopoulou & Eric Tchouamou Njoya & Dimitris Karampatzakis, 2020. "Artificial Intelligence, Transport and the Smart City: Definitions and Dimensions of a New Mobility Era," Sustainability, MDPI, vol. 12(7), pages 1-19, April.
  26. Liu, Jianmiao & Li, Junyi & Chen, Yong & Lian, Song & Zeng, Jiaqi & Geng, Maosi & Zheng, Sijing & Dong, Yinan & He, Yan & Huang, Pei & Zhao, Zhijian & Yan, Xiaoyu & Hu, Qinru & Wang, Lei & Yang, Di & , 2023. "Multi-scale urban passenger transportation CO2 emission calculation platform for smart mobility management," Applied Energy, Elsevier, vol. 331(C).
  27. Xi, Haoning & Liu, Wei & Waller, S. Travis & Hensher, David A. & Kilby, Philip & Rey, David, 2023. "Incentive-compatible mechanisms for online resource allocation in Mobility-as-a-Service systems," Transportation Research Part B: Methodological, Elsevier, vol. 170(C), pages 119-147.
  28. Hensher, David A. & Ho, Chinh Q. & Reck, Daniel J., 2021. "Mobility as a service and private car use: Evidence from the Sydney MaaS trial," Transportation Research Part A: Policy and Practice, Elsevier, vol. 145(C), pages 17-33.
  29. van 't Veer, Renske & Annema, Jan Anne & Araghi, Yashar & Homem de Almeida Correia, Gonçalo & van Wee, Bert, 2023. "Mobility-as-a-Service (MaaS): A latent class cluster analysis to identify Dutch vehicle owners’ use intention," Transportation Research Part A: Policy and Practice, Elsevier, vol. 169(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.