IDEAS home Printed from https://ideas.repec.org/r/eee/intfor/v35y2019i2p555-572.html
   My bibliography  Save this item

Nowcasting and forecasting GDP in emerging markets using global financial and macroeconomic diffusion indexes

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Gary Cornwall & Marina Gindelsky, 2025. "Nowcasting Distributional National Accounts for the United States: A Machine Learning Approach," AEA Papers and Proceedings, American Economic Association, vol. 115, pages 79-84, May.
  2. Mohammad Abdullah & Mohammad Ashraful Ferdous Chowdhury & Ajim Uddin & Syed Moudud‐Ul‐Huq, 2023. "Forecasting nonperforming loans using machine learning," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1664-1689, November.
  3. Stankevich, Ivan, 2020. "Comparison of macroeconomic indicators nowcasting methods: Russian GDP case," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 59, pages 113-127.
  4. Marijn A Bolhuis & Judd N L Cramer & Lawrence H Summers, 2022. "The Coming Rise in Residential Inflation [The repeat rent index]," Review of Finance, European Finance Association, vol. 26(5), pages 1051-1072.
  5. Thomas Despois & Catherine Doz, 2022. "Identifying and interpreting the factors in factor models via sparsity : Different approaches," Working Papers halshs-03626503, HAL.
  6. Thomas Despois & Catherine Doz, 2023. "Identifying and interpreting the factors in factor models via sparsity: Different approaches," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(4), pages 533-555, June.
  7. Oguzhan Cepni & I. Ethem Guney & Norman R. Swanson, 2020. "Forecasting and nowcasting emerging market GDP growth rates: The role of latent global economic policy uncertainty and macroeconomic data surprise factors," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(1), pages 18-36, January.
  8. Zhang, Yaojie & He, Mengxi & Wen, Danyan & Wang, Yudong, 2023. "Forecasting crude oil price returns: Can nonlinearity help?," Energy, Elsevier, vol. 262(PB).
  9. Jack Fosten & Shaoni Nandi, 2023. "Nowcasting from cross‐sectionally dependent panels," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(6), pages 898-919, September.
  10. Oguzhan Cepni & Ibrahim Ethem Guney & Doruk Kucuksarac & M. Hasan Yilmaz, 2021. "Do local and global factors impact the emerging markets' sovereign yield curves? Evidence from a data‐rich environment," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(7), pages 1214-1229, November.
  11. Bryan T. Kelly & Asaf Manela & Alan Moreira, 2019. "Text Selection," NBER Working Papers 26517, National Bureau of Economic Research, Inc.
  12. Rudrani Bhattacharya & Bornali Bhandari & Sudipto Mundle, 2023. "Nowcasting India’s Quarterly GDP Growth: A Factor-Augmented Time-Varying Coefficient Regression Model (FA-TVCRM)," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 21(1), pages 213-234, March.
  13. Oguzhan Cepni & Rangan Gupta & I. Ethem Güney & M. Yilmaz, 2020. "Forecasting local currency bond risk premia of emerging markets: The role of cross‐country macrofinancial linkages," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(6), pages 966-985, September.
  14. Daryoosh Borzuei & Seyed Farhan Moosavian & Abolfazl Ahmadi, 2022. "Investigating the dependence of energy prices and economic growth rates with emphasis on the development of renewable energy for sustainable development in Iran," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(5), pages 848-854, October.
  15. Claveria, Oscar & Monte, Enric & Torra, Salvador, 2020. "Economic forecasting with evolved confidence indicators," Economic Modelling, Elsevier, vol. 93(C), pages 576-585.
  16. Bantis, Evripidis & Clements, Michael P. & Urquhart, Andrew, 2023. "Forecasting GDP growth rates in the United States and Brazil using Google Trends," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1909-1924.
  17. Michael Zhemkov, 2021. "Nowcasting Russian GDP using forecast combination approach," International Economics, CEPII research center, issue 168, pages 10-24.
  18. Alina Stundziene & Vaida Pilinkiene & Jurgita Bruneckiene & Andrius Grybauskas & Mantas Lukauskas & Irena Pekarskiene, 2024. "Future directions in nowcasting economic activity: A systematic literature review," Journal of Economic Surveys, Wiley Blackwell, vol. 38(4), pages 1199-1233, September.
  19. Oguzhan Cepni & Rangan Gupta & Yigit Onay, 2022. "The role of investor sentiment in forecasting housing returns in China: A machine learning approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(8), pages 1725-1740, December.
  20. Liu, Yang & Swanson, Norman R., 2024. "An assessment of the marginal predictive content of economic uncertainty indexes and business conditions predictors," International Journal of Forecasting, Elsevier, vol. 40(4), pages 1391-1409.
  21. Thomas Despois & Catherine Doz, 2022. "Identifying and interpreting the factors in factor models via sparsity : Different approaches," PSE Working Papers halshs-03626503, HAL.
  22. Oguzhan Cepni, Duc Khuong Nguyen, and Ahmet Sensoy, 2022. "News Media and Attention Spillover across Energy Markets: A Powerful Predictor of Crude Oil Futures Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
  23. Hajilee, Massomeh & Stringer, Donna Y. & Hayes, Linda A., 2021. "On the link between the shadow economy and stock market development: An asymmetry analysis," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 303-316.
  24. Gary Cornwall & Marina Gindelsky, 2025. "Nowcasting Distributional National Accounts for the United States: A Machine Learning Approach," AEA Papers and Proceedings, American Economic Association, vol. 115, pages 79-84, May.
  25. Valeria Costantini & Elena Paglialunga & Angela Zanoni, 2025. "Relatio sine qua non. Exploring interconnectedness in sustainable development," Economics and Business Letters, Oviedo University Press, vol. 14(1), pages 11-23.
  26. Oscar Claveria & Enric Monte & Salvador Torra, 2021. "“Nowcasting and forecasting GDP growth with machine-learning sentiment indicators”," AQR Working Papers 202101, University of Barcelona, Regional Quantitative Analysis Group, revised Feb 2021.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.