IDEAS home Printed from https://ideas.repec.org/r/eee/intfor/v30y2014i1p43-54.html
   My bibliography  Save this item

Combining forecasts: An application to elections

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. von der Gracht, Heiko A. & Hommel, Ulrich & Prokesch, Tobias & Wohlenberg, Holger, 2016. "Testing weighting approaches for forecasting in a Group Wisdom Support System environment," Journal of Business Research, Elsevier, vol. 69(10), pages 4081-4094.
  2. Ko, Hyein & Jackson, Natalie & Osborn, Tracy & Lewis-Beck, Michael S., 2025. "Forecasting presidential elections: Accuracy of ANES voter intentions," International Journal of Forecasting, Elsevier, vol. 41(1), pages 66-75.
  3. Tai, Chung-Ching & Lin, Hung-Wen & Chie, Bin-Tzong & Tung, Chen-Yuan, 2019. "Predicting the failures of prediction markets: A procedure of decision making using classification models," International Journal of Forecasting, Elsevier, vol. 35(1), pages 297-312.
  4. Di, Chen & Dimitrov, Stanko & He, Qi-Ming, 2019. "Incentive compatibility in prediction markets: Costly actions and external incentives," International Journal of Forecasting, Elsevier, vol. 35(1), pages 351-370.
  5. Fronzetti Colladon, Andrea, 2020. "Forecasting election results by studying brand importance in online news," International Journal of Forecasting, Elsevier, vol. 36(2), pages 414-427.
  6. Chih‐Yu Chin & Cheng‐Lung Wang, 2021. "A new insight into combining forecasts for elections: The role of social media," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(1), pages 132-143, January.
  7. Bohdan M. Pavlyshenko, 2019. "Machine-Learning Models for Sales Time Series Forecasting," Data, MDPI, vol. 4(1), pages 1-11, January.
  8. Bacci, Livio Agnew & Mello, Luiz Gustavo & Incerti, Taynara & Paulo de Paiva, Anderson & Balestrassi, Pedro Paulo, 2019. "Optimization of combined time series methods to forecast the demand for coffee in Brazil: A new approach using Normal Boundary Intersection coupled with mixture designs of experiments and rotated fact," International Journal of Production Economics, Elsevier, vol. 212(C), pages 186-211.
  9. Pan, Zhiyuan & Wang, Yudong & Wu, Chongfeng & Yin, Libo, 2017. "Oil price volatility and macroeconomic fundamentals: A regime switching GARCH-MIDAS model," Journal of Empirical Finance, Elsevier, vol. 43(C), pages 130-142.
  10. Claeskens, Gerda & Magnus, Jan R. & Vasnev, Andrey L. & Wang, Wendun, 2016. "The forecast combination puzzle: A simple theoretical explanation," International Journal of Forecasting, Elsevier, vol. 32(3), pages 754-762.
  11. Armstrong, J. Scott & Green, Kesten C. & Graefe, Andreas, 2015. "Golden rule of forecasting: Be conservative," Journal of Business Research, Elsevier, vol. 68(8), pages 1717-1731.
  12. repec:cup:judgdm:v:13:y:2018:i:4:p:334-344 is not listed on IDEAS
  13. Kizilaslan, Recep & Freund, Steven & Iseri, Ali, 2016. "A data analytic approach to forecasting daily stock returns in an emerging marketAuthor-Name: Oztekin, Asil," European Journal of Operational Research, Elsevier, vol. 253(3), pages 697-710.
  14. Ronald McDonald & Xuxin Mao, 2015. "Forecasting the 2015 General Election with Internet Big Data: An Application of the TRUST Framework," Working Papers 2016_03, Business School - Economics, University of Glasgow.
  15. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
    • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
  16. Paritosh Navinchandra Jha & Marco Cucculelli, 2021. "A New Model Averaging Approach in Predicting Credit Risk Default," Risks, MDPI, vol. 9(6), pages 1-15, June.
  17. Khan, Urmee & Lieli, Robert P., 2018. "Information flow between prediction markets, polls and media: Evidence from the 2008 presidential primaries," International Journal of Forecasting, Elsevier, vol. 34(4), pages 696-710.
  18. Cui, Mengying & Yu, Lijie & Nie, Shaoyu & Dai, Zhe & Ge, Ying-en & Levinson, David, 2025. "How do access and spatial dependency shape metro passenger flows," Journal of Transport Geography, Elsevier, vol. 123(C).
  19. repec:cup:judgdm:v:15:y:2020:i:5:p:863-880 is not listed on IDEAS
  20. Bunker, Kenneth, 2020. "A two-stage model to forecast elections in new democracies," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1407-1419.
  21. Liu, Jing & Wei, Yu & Ma, Feng & Wahab, M.I.M., 2017. "Forecasting the realized range-based volatility using dynamic model averaging approach," Economic Modelling, Elsevier, vol. 61(C), pages 12-26.
  22. Cerina, Roberto & Duch, Raymond, 2020. "Measuring public opinion via digital footprints," International Journal of Forecasting, Elsevier, vol. 36(3), pages 987-1002.
  23. Ricardo J. G. Mateus & João C. Bana e Costa & Pedro Verga Matos, 2017. "Supporting Multicriteria Group Decisions with MACBETH Tools: Selection of Sustainable Brownfield Redevelopment Actions," Group Decision and Negotiation, Springer, vol. 26(3), pages 495-521, May.
  24. Andrew Gelman & Jessica Hullman & Christopher Wlezien & George Elliott Morris, 2020. "Information, incentives, and goals in election forecasts," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 15(5), pages 863-880, September.
  25. WenJie Wang & Qi Xu & Dandan Fan, 2018. "Stein-Rule Combination Forecasting on RFID Based Supply Chain," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(02), pages 1-13, April.
  26. Murtaza Nasir & Nichalin Summerfield & Ali Dag & Asil Oztekin, 2020. "A service analytic approach to studying patient no-shows," Service Business, Springer;Pan-Pacific Business Association, vol. 14(2), pages 287-313, June.
  27. Munzert, Simon, 2017. "Forecasting elections at the constituency level: A correction–combination procedure," International Journal of Forecasting, Elsevier, vol. 33(2), pages 467-481.
  28. Brighton, Henry & Gigerenzer, Gerd, 2015. "The bias bias," Journal of Business Research, Elsevier, vol. 68(8), pages 1772-1784.
  29. Esteban Fernández-Vázquez & Blanca Moreno, 2017. "Entropy Econometrics for combining regional economic forecasts: A Data-Weighted Prior Estimator," Journal of Geographical Systems, Springer, vol. 19(4), pages 349-370, October.
  30. Harry Garretsen & Janka I. Stoker & Rob Alessie & Joris Lammers, 2014. "Simply a Matter of Luck & Looks? Predicting Elections when Both the World Economy and the Psychology of Faces Count," CESifo Working Paper Series 4857, CESifo.
  31. Andreas Graefe, 2018. "Predicting elections: Experts, polls, and fundamentals," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 13(4), pages 334-344, July.
  32. Graefe, Andreas & Armstrong, J. Scott & Jones, Randall J. & Cuzan, Alfred G., 2017. "Assessing the 2016 U.S. Presidential Election Popular Vote Forecasts," MPRA Paper 83282, University Library of Munich, Germany.
  33. Graefe, Andreas & Küchenhoff, Helmut & Stierle, Veronika & Riedl, Bernhard, 2015. "Limitations of Ensemble Bayesian Model Averaging for forecasting social science problems," International Journal of Forecasting, Elsevier, vol. 31(3), pages 943-951.
  34. UMEDA, Michio, 2023. "Aggregating qualitative district-level campaign assessments to forecast election results: Evidence from Japan," International Journal of Forecasting, Elsevier, vol. 39(2), pages 956-966.
  35. Thomson, Mary E. & Pollock, Andrew C. & Önkal, Dilek & Gönül, M. Sinan, 2019. "Combining forecasts: Performance and coherence," International Journal of Forecasting, Elsevier, vol. 35(2), pages 474-484.
  36. José Garcia Montalvo & Omiros Papaspiliopoulos & Timothée Stumpf-Fétizon, 2018. "Bayesian forecasting of electoral outcomes with new parties' competition," Economics Working Papers 1624, Department of Economics and Business, Universitat Pompeu Fabra.
  37. Satopää, Ville A. & Baron, Jonathan & Foster, Dean P. & Mellers, Barbara A. & Tetlock, Philip E. & Ungar, Lyle H., 2014. "Combining multiple probability predictions using a simple logit model," International Journal of Forecasting, Elsevier, vol. 30(2), pages 344-356.
  38. Graefe, Andreas, 2019. "Accuracy of German federal election forecasts, 2013 & 2017," International Journal of Forecasting, Elsevier, vol. 35(3), pages 868-877.
  39. Andreas Graefe & Kesten C Green & J Scott Armstrong, 2019. "Accuracy gains from conservative forecasting: Tests using variations of 19 econometric models to predict 154 elections in 10 countries," PLOS ONE, Public Library of Science, vol. 14(1), pages 1-14, January.
  40. Asil Oztekin, 2018. "Information fusion-based meta-classification predictive modeling for ETF performance," Information Systems Frontiers, Springer, vol. 20(2), pages 223-238, April.
  41. Timothée Stumpf-Fétizon & Omiros Papaspiliopoulos & José García-Montalvo, 2018. "Bayesian Forecasting of Electoral Outcomes with new Parties' Competition," Working Papers 1065, Barcelona School of Economics.
  42. MohammadAmin Fazli & Azin Ghazimatin & Jafar Habibi & Hamid Haghshenas, 2016. "Team selection for prediction tasks," Journal of Combinatorial Optimization, Springer, vol. 31(2), pages 743-757, February.
  43. Juan C. Méndez-Vizcaíno & Alexander Guarin & César Anzola-Bravo & Anderson Grajales-Olarte, 2021. "Characterizing and Communicating the Balance of Risks of Macroeconomic Forecasts: A Predictive Density Approach for Colombia," Borradores de Economia 1178, Banco de la Republica de Colombia.
  44. Nguyen, Quyen & Diaz-Rainey, Ivan & Kuruppuarachchi, Duminda, 2021. "Predicting corporate carbon footprints for climate finance risk analyses: A machine learning approach," Energy Economics, Elsevier, vol. 95(C).
  45. Hollyman, Ross & Petropoulos, Fotios & Tipping, Michael E., 2021. "Understanding forecast reconciliation," European Journal of Operational Research, Elsevier, vol. 294(1), pages 149-160.
  46. Graefe, Andreas, 2023. "Embrace the differences: Revisiting the PollyVote method of combining forecasts for U.S. presidential elections (2004 to 2020)," International Journal of Forecasting, Elsevier, vol. 39(1), pages 170-177.
  47. Rothschild, David, 2015. "Combining forecasts for elections: Accurate, relevant, and timely," International Journal of Forecasting, Elsevier, vol. 31(3), pages 952-964.
  48. Levene, Mark & Fenner, Trevor, 2021. "A stochastic differential equation approach to the analysis of the 2017 and 2019 UK general election polls," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1227-1234.
  49. Graefe, Andreas, 2015. "Improving forecasts using equally weighted predictors," Journal of Business Research, Elsevier, vol. 68(8), pages 1792-1799.
  50. Montalvo, José G. & Papaspiliopoulos, Omiros & Stumpf-Fétizon, Timothée, 2019. "Bayesian forecasting of electoral outcomes with new parties’ competition," European Journal of Political Economy, Elsevier, vol. 59(C), pages 52-70.
  51. Asil Oztekin, 0. "Information fusion-based meta-classification predictive modeling for ETF performance," Information Systems Frontiers, Springer, vol. 0, pages 1-16.
  52. Brown, Alasdair & Reade, J. James & Vaughan Williams, Leighton, 2019. "When are prediction market prices most informative?," International Journal of Forecasting, Elsevier, vol. 35(1), pages 420-428.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.