IDEAS home Printed from https://ideas.repec.org/r/eee/insuma/v42y2008i2p817-830.html
   My bibliography  Save this item

Heavy-tailed longitudinal data modeling using copulas

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Shi, Peng & Feng, Xiaoping & Ivantsova, Anastasia, 2015. "Dependent frequency–severity modeling of insurance claims," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 417-428.
  2. Edward W. Frees & Gee Lee & Lu Yang, 2016. "Multivariate Frequency-Severity Regression Models in Insurance," Risks, MDPI, vol. 4(1), pages 1-36, February.
  3. Peng Shi & Wei Zhang, 2011. "A copula regression model for estimating firm efficiency in the insurance industry," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(10), pages 2271-2287.
  4. Marta Nai Ruscone & Daniel Fernández, 2021. "Dynamics of HDI Index: Temporal Dependence Based on D-vine Copulas Model for Three-Way Data," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 158(2), pages 563-593, December.
  5. Yang, Xipei & Frees, Edward W. & Zhang, Zhengjun, 2011. "A generalized beta copula with applications in modeling multivariate long-tailed data," Insurance: Mathematics and Economics, Elsevier, vol. 49(2), pages 265-284, September.
  6. Kaiwen Wang & Jiehui Ding & Kristen R. Lidwell & Scott Manski & Gee Y. Lee & Emilio Xavier Esposito, 2019. "Treatment Level and Store Level Analyses of Healthcare Data," Risks, MDPI, vol. 7(2), pages 1-22, April.
  7. Shi, Peng & Frees, Edward W., 2010. "Long-tail longitudinal modeling of insurance company expenses," Insurance: Mathematics and Economics, Elsevier, vol. 47(3), pages 303-314, December.
  8. Katrien Antonio & Emiliano Valdez, 2012. "Statistical concepts of a priori and a posteriori risk classification in insurance," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(2), pages 187-224, June.
  9. Matthias Killiches & Claudia Czado, 2018. "A D‐vine copula‐based model for repeated measurements extending linear mixed models with homogeneous correlation structure," Biometrics, The International Biometric Society, vol. 74(3), pages 997-1005, September.
  10. Liu, Xiang-dong & Pan, Fei & Cai, Wen-li & Peng, Rui, 2020. "Correlation and risk measurement modeling: A Markov-switching mixed Clayton copula approach," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
  11. Mothafer, Ghasak I.M.A. & Yamamoto, Toshiyuki & Shankar, Venkataraman N., 2018. "A multivariate heterogeneous-dispersion count model for asymmetric interdependent freeway crash types," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 84-105.
  12. Safari-Katesari Hadi & Zaroudi Samira, 2020. "Count copula regression model using generalized beta distribution of the second kind," Statistics in Transition New Series, Polish Statistical Association, vol. 21(2), pages 1-12, June.
  13. Kangning Wang & Wen Shan, 2021. "Copula and composite quantile regression-based estimating equations for longitudinal data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(3), pages 441-455, June.
  14. Valdez, Emiliano A. & Vadiveloo, Jeyaraj & Dias, Ushani, 2014. "Life insurance policy termination and survivorship," Insurance: Mathematics and Economics, Elsevier, vol. 58(C), pages 138-149.
  15. Massimo Costabile & Fabio Viviano, 2021. "Modeling the Future Value Distribution of a Life Insurance Portfolio," Risks, MDPI, vol. 9(10), pages 1-17, October.
  16. Andrew M. Jones & James Lomas & Nigel Rice, 2014. "Applying Beta‐Type Size Distributions To Healthcare Cost Regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(4), pages 649-670, June.
  17. Patton, Andrew J., 2012. "A review of copula models for economic time series," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 4-18.
  18. Hato Schmeiser & Caroline Siegel & Joël Wagner, 2012. "The risk of model misspecification and its impact on solvency measurement in the insurance sector," Journal of Risk Finance, Emerald Group Publishing, vol. 13(4), pages 285-308, August.
  19. Kangning Wang & Mengjie Hao & Xiaofei Sun, 2021. "Robust and efficient estimating equations for longitudinal data partial linear models and its applications," Statistical Papers, Springer, vol. 62(5), pages 2147-2168, October.
  20. Shi, Peng, 2012. "Multivariate longitudinal modeling of insurance company expenses," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 204-215.
  21. Weiping Zhang & MengMeng Zhang & Yu Chen, 2020. "A Copula-Based GLMM Model for Multivariate Longitudinal Data with Mixed-Types of Responses," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(2), pages 353-379, November.
  22. Shi, Peng & Valdez, Emiliano A., 2011. "A copula approach to test asymmetric information with applications to predictive modeling," Insurance: Mathematics and Economics, Elsevier, vol. 49(2), pages 226-239, September.
  23. Martin Eling & Denis Toplek, 2009. "Modeling and Management of Nonlinear Dependencies–Copulas in Dynamic Financial Analysis," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 76(3), pages 651-681, September.
  24. Brendan K. Beare & Juwon Seo, 2015. "Vine Copula Specifications for Stationary Multivariate Markov Chains," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(2), pages 228-246, March.
  25. Penikas, H., 2010. "Financial Applications of Copula-Models," Journal of the New Economic Association, New Economic Association, issue 7, pages 24-44.
  26. Dornheim, Harald & Brazauskas, Vytaras, 2011. "Robust-efficient credibility models with heavy-tailed claims: A mixed linear models perspective," Insurance: Mathematics and Economics, Elsevier, vol. 48(1), pages 72-84, January.
  27. Hadi Safari-Katesari & Samira Zaroudi, 2020. "Count copula regression model using generalized beta distribution of the second kind," Statistics in Transition New Series, Polish Statistical Association, vol. 21(2), pages 1-12, June.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.