IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v70y2014icp529-538.html
   My bibliography  Save this item

High thermal performance lithium-ion battery pack including hybrid active–passive thermal management system for using in hybrid/electric vehicles

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Jin, Xianrong & Duan, Xiting & Jiang, Wenjuan & Wang, Yan & Zou, Youlan & Lei, Weixin & Sun, Lizhong & Ma, Zengsheng, 2021. "Structural design of a composite board/heat pipe based on the coupled electro-chemical-thermal model in battery thermal management system," Energy, Elsevier, vol. 216(C).
  2. Mohammed, Abubakar Gambo & Elfeky, Karem Elsayed & Wang, Qiuwang, 2022. "Recent advancement and enhanced battery performance using phase change materials based hybrid battery thermal management for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
  3. Zichen, Wang & Changqing, Du, 2021. "A comprehensive review on thermal management systems for power lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
  4. Fatih Selimefendigil & Furkan Dilbaz & Hakan F. Öztop, 2023. "Combined Utilization of Cylinder and Different Shaped Alumina Nanoparticles in the Base Fluid for the Effective Cooling System Design of Lithium-Ion Battery Packs," Energies, MDPI, vol. 16(9), pages 1-17, May.
  5. Ardani, M.I. & Patel, Y. & Siddiq, A. & Offer, G.J. & Martinez-Botas, R.F., 2018. "Combined experimental and numerical evaluation of the differences between convective and conductive thermal control on the performance of a lithium ion cell," Energy, Elsevier, vol. 144(C), pages 81-97.
  6. Lv, Youfu & Yang, Xiaoqing & Li, Xinxi & Zhang, Guoqing & Wang, Ziyuan & Yang, Chengzhao, 2016. "Experimental study on a novel battery thermal management technology based on low density polyethylene-enhanced composite phase change materials coupled with low fins," Applied Energy, Elsevier, vol. 178(C), pages 376-382.
  7. Feng, Xuning & Lu, Languang & Ouyang, Minggao & Li, Jiangqiu & He, Xiangming, 2016. "A 3D thermal runaway propagation model for a large format lithium ion battery module," Energy, Elsevier, vol. 115(P1), pages 194-208.
  8. Chen, Kai & Wu, Weixiong & Yuan, Fang & Chen, Lin & Wang, Shuangfeng, 2019. "Cooling efficiency improvement of air-cooled battery thermal management system through designing the flow pattern," Energy, Elsevier, vol. 167(C), pages 781-790.
  9. Wu, Weixiong & Yang, Xiaoqing & Zhang, Guoqing & Ke, Xiufang & Wang, Ziyuan & Situ, Wenfu & Li, Xinxi & Zhang, Jiangyun, 2016. "An experimental study of thermal management system using copper mesh-enhanced composite phase change materials for power battery pack," Energy, Elsevier, vol. 113(C), pages 909-916.
  10. Hussain, Abid & Tso, C.Y. & Chao, Christopher Y.H., 2016. "Experimental investigation of a passive thermal management system for high-powered lithium ion batteries using nickel foam-paraffin composite," Energy, Elsevier, vol. 115(P1), pages 209-218.
  11. Li, Junfu & Wang, Lixin & Lyu, Chao & Zhang, Liqiang & Wang, Han, 2015. "Discharge capacity estimation for Li-ion batteries based on particle filter under multi-operating conditions," Energy, Elsevier, vol. 86(C), pages 638-648.
  12. Odile Capron & Ahmadou Samba & Noshin Omar & Thierry Coosemans & Peter Van den Bossche & Joeri Van Mierlo, 2015. "Lithium-Ion Batteries: Thermal Behaviour Investigation of Unbalanced Modules," Sustainability, MDPI, vol. 7(7), pages 1-25, June.
  13. Zhang, Jiangyun & Shao, Dan & Jiang, Liqin & Zhang, Guoqing & Wu, Hongwei & Day, Rodney & Jiang, Wenzhao, 2022. "Advanced thermal management system driven by phase change materials for power lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
  14. Elsewify, O. & Souri, M. & Esfahani, M.N. & Hosseinzadeh, E. & Jabbari, M., 2021. "A new method for internal cooling of a large format lithium-ion battery pouch cell," Energy, Elsevier, vol. 225(C).
  15. Xu, Meng & Zhang, Zhuqian & Wang, Xia & Jia, Li & Yang, Lixin, 2015. "A pseudo three-dimensional electrochemical–thermal model of a prismatic LiFePO4 battery during discharge process," Energy, Elsevier, vol. 80(C), pages 303-317.
  16. Zhao, Rui & Liu, Jie & Gu, Junjie, 2017. "A comprehensive study on Li-ion battery nail penetrations and the possible solutions," Energy, Elsevier, vol. 123(C), pages 392-401.
  17. Jeong, Dongho & Lee, Jongsoo, 2014. "Electrode design optimization of lithium secondary batteries to enhance adhesion and deformation capabilities," Energy, Elsevier, vol. 75(C), pages 525-533.
  18. Fathabadi, Hassan, 2019. "Combining a proton exchange membrane fuel cell (PEMFC) stack with a Li-ion battery to supply the power needs of a hybrid electric vehicle," Renewable Energy, Elsevier, vol. 130(C), pages 714-724.
  19. Fathabadi, Hassan, 2015. "Utilization of electric vehicles and renewable energy sources used as distributed generators for improving characteristics of electric power distribution systems," Energy, Elsevier, vol. 90(P1), pages 1100-1110.
  20. Bazinski, S.J. & Wang, X. & Sangeorzan, B.P. & Guessous, L., 2016. "Measuring and assessing the effective in-plane thermal conductivity of lithium iron phosphate pouch cells," Energy, Elsevier, vol. 114(C), pages 1085-1092.
  21. Fathabadi, Hassan, 2018. "Novel fuel cell/battery/supercapacitor hybrid power source for fuel cell hybrid electric vehicles," Energy, Elsevier, vol. 143(C), pages 467-477.
  22. Mali, Vima & Saxena, Rajat & Kumar, Kundan & Kalam, Abul & Tripathi, Brijesh, 2021. "Review on battery thermal management systems for energy-efficient electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
  23. Oh, Taek Hyun & Jang, Bosun & Kwon, Sejin, 2015. "Estimating the energy density of direct borohydride–hydrogen peroxide fuel cell systems for air-independent propulsion applications," Energy, Elsevier, vol. 90(P1), pages 980-986.
  24. Mohammad Joula & Savas Dilibal & Gonca Mafratoglu & Josiah Owusu Danquah & Mohammad Alipour, 2022. "Hybrid Battery Thermal Management System with NiTi SMA and Phase Change Material (PCM) for Li-ion Batteries," Energies, MDPI, vol. 15(12), pages 1-16, June.
  25. Giorgio Previati & Giampiero Mastinu & Massimiliano Gobbi, 2022. "Thermal Management of Electrified Vehicles—A Review," Energies, MDPI, vol. 15(4), pages 1-29, February.
  26. Jilte, Ravindra & Afzal, Asif & Panchal, Satyam, 2021. "A novel battery thermal management system using nano-enhanced phase change materials," Energy, Elsevier, vol. 219(C).
  27. Xintian Liu & Zhihao Wan & Yao He & Xinxin Zheng & Guojian Zeng & Jiangfeng Zhang, 2018. "A Unified Control Strategy for Inductor-Based Active Battery Equalisation Schemes," Energies, MDPI, vol. 11(2), pages 1-16, February.
  28. Dong, Guangzhong & Zhang, Xu & Zhang, Chenbin & Chen, Zonghai, 2015. "A method for state of energy estimation of lithium-ion batteries based on neural network model," Energy, Elsevier, vol. 90(P1), pages 879-888.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.