IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v30y2005i5p693-708.html
   My bibliography  Save this item

First and second order Markov chain models for synthetic generation of wind speed time series

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Goić, R. & Krstulović, J. & Jakus, D., 2010. "Simulation of aggregate wind farm short-term production variations," Renewable Energy, Elsevier, vol. 35(11), pages 2602-2609.
  2. D’Amico, Guglielmo & Petroni, Filippo & Prattico, Flavio, 2015. "Economic performance indicators of wind energy based on wind speed stochastic modeling," Applied Energy, Elsevier, vol. 154(C), pages 290-297.
  3. Haghighat, Fatemeh, 2021. "Predicting the trend of indicators related to Covid-19 using the combined MLP-MC model," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
  4. Wang, Jianzhou & Qin, Shanshan & Zhou, Qingping & Jiang, Haiyan, 2015. "Medium-term wind speeds forecasting utilizing hybrid models for three different sites in Xinjiang, China," Renewable Energy, Elsevier, vol. 76(C), pages 91-101.
  5. Carta, José A. & Velázquez, Sergio & Cabrera, Pedro, 2013. "A review of measure-correlate-predict (MCP) methods used to estimate long-term wind characteristics at a target site," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 362-400.
  6. Jujie Wang & Yanfeng Wang & Yaning Li, 2018. "A Novel Hybrid Strategy Using Three-Phase Feature Extraction and a Weighted Regularized Extreme Learning Machine for Multi-Step Ahead Wind Speed Prediction," Energies, MDPI, vol. 11(2), pages 1-33, February.
  7. Amanda S. Hering & Karen Kazor & William Kleiber, 2015. "A Markov-Switching Vector Autoregressive Stochastic Wind Generator for Multiple Spatial and Temporal Scales," Resources, MDPI, vol. 4(1), pages 1-23, February.
  8. Tang, Jie & Brouste, Alexandre & Tsui, Kwok Leung, 2015. "Some improvements of wind speed Markov chain modeling," Renewable Energy, Elsevier, vol. 81(C), pages 52-56.
  9. Meschede, Henning & Dunkelberg, Heiko & Stöhr, Fabian & Peesel, Ron-Hendrik & Hesselbach, Jens, 2017. "Assessment of probabilistic distributed factors influencing renewable energy supply for hotels using Monte-Carlo methods," Energy, Elsevier, vol. 128(C), pages 86-100.
  10. Yirgalem Chebud & Assefa Melesse, 2011. "Operational Prediction of Groundwater Fluctuation in South Florida using Sequence Based Markovian Stochastic Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(9), pages 2279-2294, July.
  11. D’Amico, Guglielmo & Petroni, Filippo & Prattico, Flavio, 2013. "First and second order semi-Markov chains for wind speed modeling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(5), pages 1194-1201.
  12. Karami, M. & Shayanfar, H.A. & Aghaei, J. & Ahmadi, A., 2013. "Scenario-based security-constrained hydrothermal coordination with volatile wind power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 726-737.
  13. Zhang, Jin-hua & Liu, Yong-qian & Tian, De & Yan, Jie, 2015. "Optimal power dispatch in wind farm based on reduced blade damage and generator losses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 64-77.
  14. Bruno Damásio & João Nicolau, 2020. "Time Inhomogeneous Multivariate Markov Chains: Detecting and Testing Multiple Structural Breaks Occurring at Unknown," Working Papers REM 2020/0136, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
  15. Coville, Aidan & Siddiqui, Afzal & Vogstad, Klaus-Ole, 2011. "The effect of missing data on wind resource estimation," Energy, Elsevier, vol. 36(7), pages 4505-4517.
  16. Nuño Martinez, Edgar & Cutululis, Nicolaos & Sørensen, Poul, 2018. "High dimensional dependence in power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 197-213.
  17. Zhihao Shang & Quan Wen & Yanhua Chen & Bing Zhou & Mingliang Xu, 2022. "Wind Speed Forecasting Using Attention-Based Causal Convolutional Network and Wind Energy Conversion," Energies, MDPI, vol. 15(8), pages 1-23, April.
  18. Rundong Ge & Wenying Liu & Huiyong Li & Jianzong Zhuo & Weizhou Wang, 2015. "Research on the Multi-Period Small-Signal Stability Probability of a Power System with Wind Farms Based on the Markov Chain," Sustainability, MDPI, vol. 7(4), pages 1-18, April.
  19. Feijóo, Andrés & Villanueva, Daniel, 2016. "Assessing wind speed simulation methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 473-483.
  20. Carapellucci, Roberto & Giordano, Lorena, 2013. "A new approach for synthetically generating wind speeds: A comparison with the Markov chains method," Energy, Elsevier, vol. 49(C), pages 298-305.
  21. Suomalainen, K. & Silva, C.A. & Ferrão, P. & Connors, S., 2012. "Synthetic wind speed scenarios including diurnal effects: Implications for wind power dimensioning," Energy, Elsevier, vol. 37(1), pages 41-50.
  22. Kuznetsova, Elizaveta & Li, Yan-Fu & Ruiz, Carlos & Zio, Enrico & Ault, Graham & Bell, Keith, 2013. "Reinforcement learning for microgrid energy management," Energy, Elsevier, vol. 59(C), pages 133-146.
  23. Li, Gong & Shi, Jing & Zhou, Junyi, 2011. "Bayesian adaptive combination of short-term wind speed forecasts from neural network models," Renewable Energy, Elsevier, vol. 36(1), pages 352-359.
  24. Jinlin Li & Lanhui Zhang & Chansheng He & Chen Zhao, 2018. "A Comparison of Markov Chain Random Field and Ordinary Kriging Methods for Calculating Soil Texture in a Mountainous Watershed, Northwest China," Sustainability, MDPI, vol. 10(8), pages 1-18, August.
  25. Carapellucci, Roberto & Giordano, Lorena, 2013. "A methodology for the synthetic generation of hourly wind speed time series based on some known aggregate input data," Applied Energy, Elsevier, vol. 101(C), pages 541-550.
  26. Khasanzoda, Nasrullo & Zicmane, Inga & Beryozkina, Svetlana & Safaraliev, Murodbek & Sultonov, Sherkhon & Kirgizov, Alifbek, 2022. "Regression model for predicting the speed of wind flows for energy needs based on fuzzy logic," Renewable Energy, Elsevier, vol. 191(C), pages 723-731.
  27. Chiacchio, Ferdinando & D’Urso, Diego & Famoso, Fabio & Brusca, Sebastian & Aizpurua, Jose Ignacio & Catterson, Victoria M., 2018. "On the use of dynamic reliability for an accurate modelling of renewable power plants," Energy, Elsevier, vol. 151(C), pages 605-621.
  28. Chia-Hung Wang & Qigen Zhao & Rong Tian, 2023. "Short-Term Wind Power Prediction Based on a Hybrid Markov-Based PSO-BP Neural Network," Energies, MDPI, vol. 16(11), pages 1-24, May.
  29. Lei, Yang & Wang, Dan & Jia, Hongjie & Li, Jiaxi & Chen, Jingcheng & Li, Jingru & Yang, Zhihong, 2021. "Multi-stage stochastic planning of regional integrated energy system based on scenario tree path optimization under long-term multiple uncertainties," Applied Energy, Elsevier, vol. 300(C).
  30. Carapellucci, Roberto & Giordano, Lorena, 2013. "The effect of diurnal profile and seasonal wind regime on sizing grid-connected and off-grid wind power plants," Applied Energy, Elsevier, vol. 107(C), pages 364-376.
  31. Duan, Jikai & Zuo, Hongchao & Bai, Yulong & Duan, Jizheng & Chang, Mingheng & Chen, Bolong, 2021. "Short-term wind speed forecasting using recurrent neural networks with error correction," Energy, Elsevier, vol. 217(C).
  32. Agrawal, Alok & Sandhu, Kanwarjit Singh, 2016. "Most influential parametrical and data needs for realistic wind speed prediction," Renewable Energy, Elsevier, vol. 94(C), pages 452-465.
  33. Lujano-Rojas, Juan M. & Dufo-López, Rodolfo & Bernal-Agustín, José L., 2013. "Probabilistic modelling and analysis of stand-alone hybrid power systems," Energy, Elsevier, vol. 63(C), pages 19-27.
  34. Pinciroli, Luca & Baraldi, Piero & Ballabio, Guido & Compare, Michele & Zio, Enrico, 2022. "Optimization of the Operation and Maintenance of renewable energy systems by Deep Reinforcement Learning," Renewable Energy, Elsevier, vol. 183(C), pages 752-763.
  35. Hong, Ying-Yi & Chang, Huei-Lin & Chiu, Ching-Sheng, 2010. "Hour-ahead wind power and speed forecasting using simultaneous perturbation stochastic approximation (SPSA) algorithm and neural network with fuzzy inputs," Energy, Elsevier, vol. 35(9), pages 3870-3876.
  36. Nikolaos Stavropoulos & Alexandra Papadopoulou & Pavlos Kolias, 2021. "Evaluating the Efficiency of Off-Ball Screens in Elite Basketball Teams via Second-Order Markov Modelling," Mathematics, MDPI, vol. 9(16), pages 1-13, August.
  37. Luca Pinciroli & Piero Baraldi & Guido Ballabio & Michele Compare & Enrico Zio, 2021. "Deep Reinforcement Learning Based on Proximal Policy Optimization for the Maintenance of a Wind Farm with Multiple Crews," Energies, MDPI, vol. 14(20), pages 1-17, October.
  38. Yousif Alyousifi & Kamarulzaman Ibrahim & Mahmod Othamn & Wan Zawiah Wan Zin & Nicolas Vergne & Abdullah Al-Yaari, 2022. "Bayesian Information Criterion for Fitting the Optimum Order of Markov Chain Models: Methodology and Application to Air Pollution Data," Mathematics, MDPI, vol. 10(13), pages 1-16, June.
  39. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "A review of uncertainty characterisation approaches for the optimal design of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 258-277.
  40. Abdel-Aal, R.E. & Elhadidy, M.A. & Shaahid, S.M., 2009. "Modeling and forecasting the mean hourly wind speed time series using GMDH-based abductive networks," Renewable Energy, Elsevier, vol. 34(7), pages 1686-1699.
  41. Duan, Jikai & Chang, Mingheng & Chen, Xiangyue & Wang, Wenpeng & Zuo, Hongchao & Bai, Yulong & Chen, Bolong, 2022. "A combined short-term wind speed forecasting model based on CNN–RNN and linear regression optimization considering error," Renewable Energy, Elsevier, vol. 200(C), pages 788-808.
  42. Liu, Heping & Shi, Jing & Erdem, Ergin, 2010. "Prediction of wind speed time series using modified Taylor Kriging method," Energy, Elsevier, vol. 35(12), pages 4870-4879.
  43. Wang, Ying & Wang, Jianzhou & Li, Zhiwu & Yang, Hufang & Li, Hongmin, 2021. "Design of a combined system based on two-stage data preprocessing and multi-objective optimization for wind speed prediction," Energy, Elsevier, vol. 231(C).
  44. Evans, S.P. & Clausen, P.D., 2015. "Modelling of turbulent wind flow using the embedded Markov chain method," Renewable Energy, Elsevier, vol. 81(C), pages 671-678.
  45. Aasim, & Singh, S.N. & Mohapatra, Abheejeet, 2019. "Repeated wavelet transform based ARIMA model for very short-term wind speed forecasting," Renewable Energy, Elsevier, vol. 136(C), pages 758-768.
  46. Masseran, Nurulkamal, 2016. "Modeling the fluctuations of wind speed data by considering their mean and volatility effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 777-784.
  47. Kerolly Kedma Felix do Nascimento & Fábio Sandro dos Santos & Jader Silva Jale & Silvio Fernando Alves Xavier Júnior & Tiago A. E. Ferreira, 2023. "Extracting Rules via Markov Chains for Cryptocurrencies Returns Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 61(3), pages 1095-1114, March.
  48. D׳Amico, Guglielmo & Petroni, Filippo & Prattico, Flavio, 2015. "Reliability measures for indexed semi-Markov chains applied to wind energy production," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 170-177.
  49. Scholz, Teresa & Lopes, Vitor V. & Estanqueiro, Ana, 2014. "A cyclic time-dependent Markov process to model daily patterns in wind turbine power production," Energy, Elsevier, vol. 67(C), pages 557-568.
  50. Moghimi Ghadikolaei, Hadi & Ahmadi, Abdollah & Aghaei, Jamshid & Najafi, Meysam, 2012. "Risk constrained self-scheduling of hydro/wind units for short term electricity markets considering intermittency and uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4734-4743.
  51. D’Amico, Guglielmo & Petroni, Filippo & Prattico, Flavio, 2014. "Wind speed and energy forecasting at different time scales: A nonparametric approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 59-66.
  52. Hong, Ying-Yi & Chang, Wen-Chun & Chang, Yung-Ruei & Lee, Yih-Der & Ouyang, Der-Chuan, 2017. "Optimal sizing of renewable energy generations in a community microgrid using Markov model," Energy, Elsevier, vol. 135(C), pages 68-74.
  53. Asif Iqbal & Syed Ahmad Hassan, 2018. "ENSO and IOD analysis on the occurrence of floods in Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(3), pages 879-890, April.
  54. Mohammadi Rad, Amin & Barforoushi, Taghi, 2020. "Optimal scheduling of resources and appliances in smart homes under uncertainties considering participation in spot and contractual markets," Energy, Elsevier, vol. 192(C).
  55. Carta, J.A. & Ramírez, P. & Velázquez, S., 2009. "A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 933-955, June.
  56. Vauhkonen, Jari & Packalen, Tuula, 2018. "Uncertainties related to climate change and forest management with implications on climate regulation in Finland," Ecosystem Services, Elsevier, vol. 33(PB), pages 213-224.
  57. Kerkhove, L.-P. & Vanhoucke, M., 2017. "Optimised scheduling for weather sensitive offshore construction projects," Omega, Elsevier, vol. 66(PA), pages 58-78.
  58. Jónsdóttir, Guðrún Margrét & Milano, Federico, 2019. "Data-based continuous wind speed models with arbitrary probability distribution and autocorrelation," Renewable Energy, Elsevier, vol. 143(C), pages 368-376.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.