IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v138y2017icp1175-1186.html
   My bibliography  Save this item

Degradation prediction of PEM fuel cell using a moving window based hybrid prognostic approach

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Zuo, Jian & Lv, Hong & Zhou, Daming & Xue, Qiong & Jin, Liming & Zhou, Wei & Yang, Daijun & Zhang, Cunman, 2021. "Deep learning based prognostic framework towards proton exchange membrane fuel cell for automotive application," Applied Energy, Elsevier, vol. 281(C).
  2. Yue, Meiling & Jemei, Samir & Zerhouni, Noureddine & Gouriveau, Rafael, 2021. "Proton exchange membrane fuel cell system prognostics and decision-making: Current status and perspectives," Renewable Energy, Elsevier, vol. 179(C), pages 2277-2294.
  3. Zhang, Caizhi & Zhang, Yuqi & Wang, Lei & Deng, Xiaozhi & Liu, Yang & Zhang, Jiujun, 2023. "A health management review of proton exchange membrane fuel cell for electric vehicles: Failure mechanisms, diagnosis techniques and mitigation measures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
  4. Chen, Dongfang & Wu, Wenlong & Chang, Kuanyu & Li, Yuehua & Pei, Pucheng & Xu, Xiaoming, 2023. "Performance degradation prediction method of PEM fuel cells using bidirectional long short-term memory neural network based on Bayesian optimization," Energy, Elsevier, vol. 285(C).
  5. Deng, Zhihua & Chan, Siew Hwa & Chen, Qihong & Liu, Hao & Zhang, Liyan & Zhou, Keliang & Tong, Sirui & Fu, Zhichao, 2023. "Efficient degradation prediction of PEMFCs using ELM-AE based on fuzzy extension broad learning system," Applied Energy, Elsevier, vol. 331(C).
  6. Deng, Huiwen & Hu, Weihao & Cao, Di & Chen, Weirong & Huang, Qi & Chen, Zhe & Blaabjerg, Frede, 2022. "Degradation trajectories prognosis for PEM fuel cell systems based on Gaussian process regression," Energy, Elsevier, vol. 244(PA).
  7. Lingling Lv & Pucheng Pei & Peng Ren & He Wang & Geng Wang, 2025. "Exploring Performance Degradation of Proton Exchange Membrane Fuel Cells Based on Diffusion Transformer Model," Energies, MDPI, vol. 18(5), pages 1-22, February.
  8. Pei, Pucheng & Meng, Yining & Chen, Dongfang & Ren, Peng & Wang, Mingkai & Wang, Xizhong, 2023. "Lifetime prediction method of proton exchange membrane fuel cells based on current degradation law," Energy, Elsevier, vol. 265(C).
  9. Song, Ke & Huang, Xing & Huang, Pengyu & Sun, Hui & Chen, Yuhui & Huang, Dongya, 2024. "Data-driven health state estimation and remaining useful life prediction of fuel cells," Renewable Energy, Elsevier, vol. 227(C).
  10. Sheng, Chuang & Fu, Jun & Qin, HongChuan & Zu, YanMin & Liang, YeZhe & Deng, ZhongHua & Wang, Zhuo & Li, Xi, 2024. "Short-term hybrid prognostics of fuel cells: A comparative and improvement study," Renewable Energy, Elsevier, vol. 237(PB).
  11. Chen, Li & Yang, Jibin & Wu, Xiaohua & Deng, Pengyi & Xu, Xiaohui & Peng, Yiqiang, 2025. "Remaining useful life prediction of PEMFCs based on mode decomposition and hybrid method under real-world traffic conditions," Energy, Elsevier, vol. 314(C).
  12. Pei, Pucheng & Chen, Dongfang & Wu, Ziyao & Ren, Peng, 2019. "Nonlinear methods for evaluating and online predicting the lifetime of fuel cells," Applied Energy, Elsevier, vol. 254(C).
  13. Zhang, Zhendong & Wang, Ya-Xiong & He, Hongwen & Sun, Fengchun, 2021. "A short- and long-term prognostic associating with remaining useful life estimation for proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 304(C).
  14. Pei, Pucheng & Fan, Tengbo & Ren, Peng & Wang, Mingkai & Chen, Dongfang & Meng, Yining & Tan, Mingbo & Shen, Hailin & Zhou, Wenping, 2025. "Fuel cell current degradation law and I-V performance prediction," Applied Energy, Elsevier, vol. 381(C).
  15. Hou, Yanzhu & Yin, Cong & Sheng, Xia & Xu, Dechao & Chen, Junxiong & Tang, Hao, 2025. "Automotive fuel cell performance degradation prediction using Multi-Agent Cooperative Advantage Actor-Critic model," Energy, Elsevier, vol. 318(C).
  16. Xuan Meng & Jian Mei & Xingwang Tang & Jinhai Jiang & Chuanyu Sun & Kai Song, 2024. "The Degradation Prediction of Proton Exchange Membrane Fuel Cell Performance Based on a Transformer Model," Energies, MDPI, vol. 17(12), pages 1-13, June.
  17. Jinquan, Guo & Hongwen, He & Jianwei, Li & Qingwu, Liu, 2022. "Driving information process system-based real-time energy management for the fuel cell bus to minimize fuel cell engine aging and energy consumption," Energy, Elsevier, vol. 248(C).
  18. Yang, Yang & Yu, Xiaoran & Zhu, Wenchao & Xie, Changjun & Zhao, Bo & Zhang, Leiqi & Shi, Ying & Huang, Liang & Zhang, Ruiming, 2023. "Degradation prediction of proton exchange membrane fuel cells with model uncertainty quantification," Renewable Energy, Elsevier, vol. 219(P2).
  19. Lei Zhao & Haifeng Dai & Fenglai Pei & Pingwen Ming & Xuezhe Wei & Jiangdong Zhou, 2022. "A Comparative Study of Equivalent Circuit Models for Electro-Chemical Impedance Spectroscopy Analysis of Proton Exchange Membrane Fuel Cells," Energies, MDPI, vol. 15(1), pages 1-16, January.
  20. He, Wenbin & Liu, Ting & Ming, Wuyi & Li, Zongze & Du, Jinguang & Li, Xiaoke & Guo, Xudong & Sun, Peiyan, 2024. "Progress in prediction of remaining useful life of hydrogen fuel cells based on deep learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
  21. Xuexia Zhang & Zixuan Yu & Weirong Chen, 2019. "Life Prediction Based on D-S ELM for PEMFC," Energies, MDPI, vol. 12(19), pages 1-15, September.
  22. Huang, Ruike & Peng, Yiqiang & Yang, Jibin & Xu, Xiaohui & Deng, Pengyi, 2022. "Correlation analysis and prediction of PEM fuel cell voltage during start-stop operation based on real-world driving data," Energy, Elsevier, vol. 260(C).
  23. Wang, Bowen & Wu, Kangcheng & Xi, Fuqiang & Xuan, Jin & Xie, Xu & Wang, Xiaoyang & Jiao, Kui, 2019. "Numerical analysis of operating conditions effects on PEMFC with anode recirculation," Energy, Elsevier, vol. 173(C), pages 844-856.
  24. Zhang, Zhendong & He, Hongwen & Wang, Yaxiong & Quan, Shengwei & Chen, Jinzhou & Han, Ruoyan, 2024. "A novel generalized prognostic method of proton exchange membrane fuel cell using multi-point estimation under various operating conditions," Applied Energy, Elsevier, vol. 357(C).
  25. Deng, Zhihua & Wang, Haijiang & Liu, Hao & Chen, Qihong & Zhang, Jiashun, 2024. "Degradation prediction of proton exchange membrane fuel cell using a novel neuron-fuzzy model based on light spectrum optimizer," Renewable Energy, Elsevier, vol. 234(C).
  26. Huu-Linh Nguyen & Sang-Min Lee & Sangseok Yu, 2023. "A Comprehensive Review of Degradation Prediction Methods for an Automotive Proton Exchange Membrane Fuel Cell," Energies, MDPI, vol. 16(12), pages 1-32, June.
  27. Yu, Yulong & Zheng, Qiang & Zhang, Tianyi & Li, Zhengyan & Chen, Lei & Tao, Wen-Quan, 2025. "Forecasting the output performance of PEMFCs via a novel deep learning framework considering varying operating conditions and time scales," Applied Energy, Elsevier, vol. 389(C).
  28. Chen, Kui & Laghrouche, Salah & Djerdir, Abdesslem, 2019. "Degradation model of proton exchange membrane fuel cell based on a novel hybrid method," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
  29. Mezzi, Rania & Yousfi-Steiner, Nadia & Péra, Marie Cécile & Hissel, Daniel & Larger, Laurent, 2021. "An Echo State Network for fuel cell lifetime prediction under a dynamic micro-cogeneration load profile," Applied Energy, Elsevier, vol. 283(C).
  30. Ong, Samuel & Al-Othman, Amani & Tawalbeh, Muhammad, 2023. "Emerging technologies in prognostics for fuel cells including direct hydrocarbon fuel cells," Energy, Elsevier, vol. 277(C).
  31. Yu, Yang & Yu, Qinghua & Luo, RunSen & Chen, Sheng & Yang, Jiebo & Yan, Fuwu, 2024. "Degradation and polarization curve prediction of proton exchange membrane fuel cells: An interpretable model perspective," Applied Energy, Elsevier, vol. 365(C).
  32. Liu, Hao & Chen, Jian & Hissel, Daniel & Lu, Jianguo & Hou, Ming & Shao, Zhigang, 2020. "Prognostics methods and degradation indexes of proton exchange membrane fuel cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
  33. Cha, Dowon & Jeon, Seung Won & Yang, Wonseok & Kim, Dongwoo & Kim, Yongchan, 2018. "Comparative performance evaluation of self-humidifying PEMFCs with short-side-chain and long-side-chain membranes under various operating conditions," Energy, Elsevier, vol. 150(C), pages 320-328.
  34. Liu, Ze & Xu, Sichuan & Zhao, Honghui & Wang, Yupeng, 2022. "Durability estimation and short-term voltage degradation forecasting of vehicle PEMFC system: Development and evaluation of machine learning models," Applied Energy, Elsevier, vol. 326(C).
  35. Qiu, Diankai & Peng, Linfa & Liang, Peng & Yi, Peiyun & Lai, Xinmin, 2018. "Mechanical degradation of proton exchange membrane along the MEA frame in proton exchange membrane fuel cells," Energy, Elsevier, vol. 165(PB), pages 210-222.
  36. Krystof Foniok & Lubomira Drozdova & Lukas Prokop & Filip Krupa & Pavel Kedron & Vojtech Blazek, 2025. "Mechanisms and Modelling of Effects on the Degradation Processes of a Proton Exchange Membrane (PEM) Fuel Cell: A Comprehensive Review," Energies, MDPI, vol. 18(8), pages 1-64, April.
  37. Jingjing Hu & Zhaoming Yang & Huai Su, 2023. "Dynamic Prediction of Natural Gas Calorific Value Based on Deep Learning," Energies, MDPI, vol. 16(2), pages 1-20, January.
  38. Pan, Rui & Yang, Duo & Wang, Yujie & Chen, Zonghai, 2020. "Health degradation assessment of proton exchange membrane fuel cell based on an analytical equivalent circuit model," Energy, Elsevier, vol. 207(C).
  39. Liu, Hao & Chen, Jian & Hissel, Daniel & Su, Hongye, 2019. "Remaining useful life estimation for proton exchange membrane fuel cells using a hybrid method," Applied Energy, Elsevier, vol. 237(C), pages 910-919.
  40. Stropnik, R. & Sekavčnik, M. & Ferriz, A.M. & Mori, M., 2018. "Reducing environmental impacts of the ups system based on PEM fuel cell with circular economy," Energy, Elsevier, vol. 165(PB), pages 824-835.
  41. Pei Wang & Hui Fu & Ke Zhang, 2018. "A pixel-level entropy-weighted image fusion algorithm based on bidimensional ensemble empirical mode decomposition," International Journal of Distributed Sensor Networks, , vol. 14(12), pages 15501477188, December.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.