IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v118y2017icp999-1017.html
   My bibliography  Save this item

Artificial neural networks to predict energy performance and retrofit scenarios for any member of a building category: A novel approach

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Smarra, Francesco & Jain, Achin & de Rubeis, Tullio & Ambrosini, Dario & D’Innocenzo, Alessandro & Mangharam, Rahul, 2018. "Data-driven model predictive control using random forests for building energy optimization and climate control," Applied Energy, Elsevier, vol. 226(C), pages 1252-1272.
  2. Zhang, Yan & Teoh, Bak Koon & Wu, Maozhi & Chen, Jiayu & Zhang, Limao, 2023. "Data-driven estimation of building energy consumption and GHG emissions using explainable artificial intelligence," Energy, Elsevier, vol. 262(PA).
  3. Linda Barelli & Elisa Belloni & Gianni Bidini & Cinzia Buratti & Emilia Maria Pinchi, 2021. "Development of a Decisional Procedure Based on Fuzzy Logic for the Energy Retrofitting of Buildings," Sustainability, MDPI, vol. 13(16), pages 1-17, August.
  4. Guariso, Giorgio & Sangiorgio, Matteo, 2019. "Multi-objective planning of building stock renovation," Energy Policy, Elsevier, vol. 130(C), pages 101-110.
  5. Abhinandana Boodi & Karim Beddiar & Malek Benamour & Yassine Amirat & Mohamed Benbouzid, 2018. "Intelligent Systems for Building Energy and Occupant Comfort Optimization: A State of the Art Review and Recommendations," Energies, MDPI, vol. 11(10), pages 1-26, September.
  6. Wei, Yixuan & Xia, Liang & Pan, Song & Wu, Jinshun & Zhang, Xingxing & Han, Mengjie & Zhang, Weiya & Xie, Jingchao & Li, Qingping, 2019. "Prediction of occupancy level and energy consumption in office building using blind system identification and neural networks," Applied Energy, Elsevier, vol. 240(C), pages 276-294.
  7. Re Cecconi, F. & Moretti, N. & Tagliabue, L.C., 2019. "Application of artificial neutral network and geographic information system to evaluate retrofit potential in public school buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 266-277.
  8. Maria Mrówczyńska & Marta Skiba & Anna Bazan-Krzywoszańska & Dorota Bazuń & Mariusz Kwiatkowski, 2018. "Social and Infrastructural Conditioning of Lowering Energy Costs and Improving the Energy Efficiency of Buildings in the Context of the Local Energy Policy," Energies, MDPI, vol. 11(9), pages 1-16, September.
  9. Fabrizio Ascione & Nicola Bianco & Claudio De Stasio & Gerardo Maria Mauro & Giuseppe Peter Vanoli, 2017. "Addressing Large-Scale Energy Retrofit of a Building Stock via Representative Building Samples: Public and Private Perspectives," Sustainability, MDPI, vol. 9(6), pages 1-18, June.
  10. Martin Eriksson & Jan Akander & Bahram Moshfegh, 2022. "Investigating Energy Use in a City District in Nordic Climate Using Energy Signature," Energies, MDPI, vol. 15(5), pages 1-22, March.
  11. Amasyali, Kadir & El-Gohary, Nora, 2021. "Machine learning for occupant-behavior-sensitive cooling energy consumption prediction in office buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
  12. Yang, Xiu'e & Liu, Shuli & Zou, Yuliang & Ji, Wenjie & Zhang, Qunli & Ahmed, Abdullahi & Han, Xiaojing & Shen, Yongliang & Zhang, Shaoliang, 2022. "Energy-saving potential prediction models for large-scale building: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
  13. Jing, Gang & Cai, Wenjian & Zhang, Xin & Cui, Can & Liu, Hongwu & Wang, Cheng, 2020. "An energy-saving control strategy for multi-zone demand controlled ventilation system with data-driven model and air balancing control," Energy, Elsevier, vol. 199(C).
  14. Yu, Kunjie & While, Lyndon & Reynolds, Mark & Wang, Xin & Liang, J.J. & Zhao, Liang & Wang, Zhenlei, 2018. "Multiobjective optimization of ethylene cracking furnace system using self-adaptive multiobjective teaching-learning-based optimization," Energy, Elsevier, vol. 148(C), pages 469-481.
  15. Kapp, Sean & Choi, Jun-Ki & Hong, Taehoon, 2023. "Predicting industrial building energy consumption with statistical and machine-learning models informed by physical system parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
  16. Xu, Bin & Cheng, Yuan-xia & Chen, Xing-ni & Xie, Xing & Ji, Jie & Jiao, Dong-sheng, 2023. "Error correction method for heat flux and a new algorithm employed in inverting wall thermal resistance using an artificial neural network: Based on IN-SITU heat flux measurements," Energy, Elsevier, vol. 282(C).
  17. Fathi, Soheil & Srinivasan, Ravi & Fenner, Andriel & Fathi, Sahand, 2020. "Machine learning applications in urban building energy performance forecasting: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
  18. Di Natale, L. & Svetozarevic, B. & Heer, P. & Jones, C.N., 2023. "Towards scalable physically consistent neural networks: An application to data-driven multi-zone thermal building models," Applied Energy, Elsevier, vol. 340(C).
  19. Haonan Zhang, 2023. "Leveraging policy instruments and financial incentives to reduce embodied carbon in energy retrofits," Papers 2304.03403, arXiv.org.
  20. Mulashani, Alvin K. & Shen, Chuanbo & Nkurlu, Baraka M. & Mkono, Christopher N. & Kawamala, Martin, 2022. "Enhanced group method of data handling (GMDH) for permeability prediction based on the modified Levenberg Marquardt technique from well log data," Energy, Elsevier, vol. 239(PA).
  21. Shamsi, Meisam & Babazadeh, Reza, 2022. "Estimation and prediction of Jatropha cultivation areas in China and India," Renewable Energy, Elsevier, vol. 183(C), pages 548-560.
  22. García Kerdan, Iván & Morillón Gálvez, David, 2020. "Artificial neural network structure optimisation for accurately prediction of exergy, comfort and life cycle cost performance of a low energy building," Applied Energy, Elsevier, vol. 280(C).
  23. Khayatian, Fazel & Sarto, Luca & Dall'O', Giuliano, 2017. "Building energy retrofit index for policy making and decision support at regional and national scales," Applied Energy, Elsevier, vol. 206(C), pages 1062-1075.
  24. Xiao, Tianqi & You, Fengqi, 2023. "Building thermal modeling and model predictive control with physically consistent deep learning for decarbonization and energy optimization," Applied Energy, Elsevier, vol. 342(C).
  25. Alabi, Tobi Michael & Aghimien, Emmanuel I. & Agbajor, Favour D. & Yang, Zaiyue & Lu, Lin & Adeoye, Adebusola R. & Gopaluni, Bhushan, 2022. "A review on the integrated optimization techniques and machine learning approaches for modeling, prediction, and decision making on integrated energy systems," Renewable Energy, Elsevier, vol. 194(C), pages 822-849.
  26. Sun, Ying & Haghighat, Fariborz & Fung, Benjamin C.M., 2022. "Trade-off between accuracy and fairness of data-driven building and indoor environment models: A comparative study of pre-processing methods," Energy, Elsevier, vol. 239(PD).
  27. Mahmoud Abdelkader Bashery Abbass & Mohamed Hamdy, 2021. "A Generic Pipeline for Machine Learning Users in Energy and Buildings Domain," Energies, MDPI, vol. 14(17), pages 1-30, August.
  28. Kwok Wai Mui & Ling Tim Wong & Manoj Kumar Satheesan & Anjana Balachandran, 2021. "A Hybrid Simulation Model to Predict the Cooling Energy Consumption for Residential Housing in Hong Kong," Energies, MDPI, vol. 14(16), pages 1-18, August.
  29. Grillone, Benedetto & Danov, Stoyan & Sumper, Andreas & Cipriano, Jordi & Mor, Gerard, 2020. "A review of deterministic and data-driven methods to quantify energy efficiency savings and to predict retrofitting scenarios in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
  30. Han, Yongming & Fan, Chenyu & Geng, Zhiqiang & Ma, Bo & Cong, Di & Chen, Kai & Yu, Bin, 2020. "Energy efficient building envelope using novel RBF neural network integrated affinity propagation," Energy, Elsevier, vol. 209(C).
  31. Wang, Zeyu & Liu, Jian & Zhang, Yuanxin & Yuan, Hongping & Zhang, Ruixue & Srinivasan, Ravi S., 2021. "Practical issues in implementing machine-learning models for building energy efficiency: Moving beyond obstacles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
  32. Li, Wenliang & Zhou, Yuyu & Cetin, Kristen & Eom, Jiyong & Wang, Yu & Chen, Gang & Zhang, Xuesong, 2017. "Modeling urban building energy use: A review of modeling approaches and procedures," Energy, Elsevier, vol. 141(C), pages 2445-2457.
  33. Seyedzadeh, Saleh & Pour Rahimian, Farzad & Oliver, Stephen & Rodriguez, Sergio & Glesk, Ivan, 2020. "Machine learning modelling for predicting non-domestic buildings energy performance: A model to support deep energy retrofit decision-making," Applied Energy, Elsevier, vol. 279(C).
  34. Zhang, Liang & Wen, Jin & Li, Yanfei & Chen, Jianli & Ye, Yunyang & Fu, Yangyang & Livingood, William, 2021. "A review of machine learning in building load prediction," Applied Energy, Elsevier, vol. 285(C).
  35. Qi Dong & Kai Xing & Hongrui Zhang, 2017. "Artificial Neural Network for Assessment of Energy Consumption and Cost for Cross Laminated Timber Office Building in Severe Cold Regions," Sustainability, MDPI, vol. 10(1), pages 1-15, December.
  36. Yujie Xu & Vivian Loftness & Edson Severnini, 2021. "Using Machine Learning to Predict Retrofit Effects for a Commercial Building Portfolio," Energies, MDPI, vol. 14(14), pages 1-24, July.
  37. Soutullo, S. & Giancola, E. & Heras, M.R., 2018. "Dynamic energy assessment to analyze different refurbishment strategies of existing dwellings placed in Madrid," Energy, Elsevier, vol. 152(C), pages 1011-1023.
  38. Ma, Nan & Aviv, Dorit & Guo, Hongshan & Braham, William W., 2021. "Measuring the right factors: A review of variables and models for thermal comfort and indoor air quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
  39. Thomas Wu & Bo Wang & Dongdong Zhang & Ziwei Zhao & Hongyu Zhu, 2023. "Benchmarking Evaluation of Building Energy Consumption Based on Data Mining," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
  40. Di Natale, L. & Svetozarevic, B. & Heer, P. & Jones, C.N., 2022. "Physically Consistent Neural Networks for building thermal modeling: Theory and analysis," Applied Energy, Elsevier, vol. 325(C).
  41. Seung Yeoun Choi & Sean Hay Kim, 2022. "Selection of a Transparent Meta-Model Algorithm for Feasibility Analysis Stage of Energy Efficient Building Design: Clustering vs. Tree," Energies, MDPI, vol. 15(18), pages 1-25, September.
  42. Işık, Erdem & Inallı, Mustafa, 2018. "Artificial neural networks and adaptive neuro-fuzzy inference systems approaches to forecast the meteorological data for HVAC: The case of cities for Turkey," Energy, Elsevier, vol. 154(C), pages 7-16.
  43. Zhong Xiao & Lingxi Peng & Yi Chen & Haohuai Liu & Jiaqing Wang & Yangang Nie, 2017. "The Dissolved Oxygen Prediction Method Based on Neural Network," Complexity, Hindawi, vol. 2017, pages 1-6, October.
  44. Maurizio Sibilla & Dhouha Touibi & Fonbeyin Henry Abanda, 2023. "Rethinking Abandoned Buildings as Positive Energy Buildings in a Former Industrial Site in Italy," Energies, MDPI, vol. 16(11), pages 1-18, June.
  45. Afroz, Zakia & Shafiullah, GM & Urmee, Tania & Higgins, Gary, 2018. "Modeling techniques used in building HVAC control systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 64-84.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.