IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v111y2016icp893-909.html
   My bibliography  Save this item

Study on the supercritical CO2 power cycles for landfill gas firing gas turbine bottoming cycle

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Li, Bo & Wang, Shun-sen, 2022. "Thermodynamic analysis and optimization of a hybrid cascade supercritical carbon dioxide cycle for waste heat recovery," Energy, Elsevier, vol. 259(C).
  2. Marchionni, Matteo & Bianchi, Giuseppe & Tassou, Savvas A., 2018. "Techno-economic assessment of Joule-Brayton cycle architectures for heat to power conversion from high-grade heat sources using CO2 in the supercritical state," Energy, Elsevier, vol. 148(C), pages 1140-1152.
  3. Heo, Jin Young & Kim, Min Seok & Baik, Seungjoon & Bae, Seong Jun & Lee, Jeong Ik, 2017. "Thermodynamic study of supercritical CO2 Brayton cycle using an isothermal compressor," Applied Energy, Elsevier, vol. 206(C), pages 1118-1130.
  4. Tozlu, Alperen & Abuşoğlu, Ayşegül & Özahi, Emrah, 2018. "Thermoeconomic analysis and optimization of a Re-compression supercritical CO2 cycle using waste heat of Gaziantep Municipal Solid Waste Power Plant," Energy, Elsevier, vol. 143(C), pages 168-180.
  5. Wang, Zhe & Jiang, Yuemao & Ma, Yue & Han, Fenghui & Ji, Yulong & Cai, Wenjian, 2022. "A partial heating supercritical CO2 nested transcritical CO2 cascade power cycle for marine engine waste heat recovery: Thermodynamic, economic, and footprint analysis," Energy, Elsevier, vol. 261(PA).
  6. Bonalumi, Davide & Giuffrida, Antonio & Sicali, Federico, 2022. "Techno-economic investigations of supercritical CO2-based partial heating cycle as bottoming system of a small gas turbine," Energy, Elsevier, vol. 252(C).
  7. Park, Joo Hyun & Park, Hyun Sun & Kwon, Jin Gyu & Kim, Tae Ho & Kim, Moo Hwan, 2018. "Optimization and thermodynamic analysis of supercritical CO2 Brayton recompression cycle for various small modular reactors," Energy, Elsevier, vol. 160(C), pages 520-535.
  8. Liao, Gaoliang & E, Jiaqiang & Zhang, Feng & Chen, Jingwei & Leng, Erwei, 2020. "Advanced exergy analysis for Organic Rankine Cycle-based layout to recover waste heat of flue gas," Applied Energy, Elsevier, vol. 266(C).
  9. Son, Seongmin & Jeong, Yongju & Cho, Seong Kuk & Lee, Jeong Ik, 2020. "Development of supercritical CO2 turbomachinery off-design model using 1D mean-line method and Deep Neural Network," Applied Energy, Elsevier, vol. 263(C).
  10. Gotelip, Thiago & Gampe, Uwe & Glos, Stefan, 2022. "Optimization strategies of different SCO2 architectures for gas turbine bottoming cycle applications," Energy, Elsevier, vol. 250(C).
  11. Olumayegun, Olumide & Wang, Meihong & Oko, Eni, 2019. "Thermodynamic performance evaluation of supercritical CO2 closed Brayton cycles for coal-fired power generation with solvent-based CO2 capture," Energy, Elsevier, vol. 166(C), pages 1074-1088.
  12. Muhammad Haroon & Nadeem Ahmed Sheikh & Abubakr Ayub & Rasikh Tariq & Farooq Sher & Aklilu Tesfamichael Baheta & Muhammad Imran, 2020. "Exergetic, Economic and Exergo-Environmental Analysis of Bottoming Power Cycles Operating with CO 2 -Based Binary Mixture," Energies, MDPI, vol. 13(19), pages 1-19, September.
  13. Wang, Yuan & Zhu, Lin & He, Yangdong & Yu, Jianting & Zhang, Chaoli & Wang, Zi, 2023. "Comparative exergoeconomic analysis of atmosphere and pressurized CLC power plants coupled with supercritical CO2 cycle," Energy, Elsevier, vol. 265(C).
  14. Son, Seongmin & Lee, Jeong Ik, 2018. "Application of adjoint sensitivity analysis method to supercritical CO2 power cycle optimization," Energy, Elsevier, vol. 147(C), pages 1153-1164.
  15. Liu, Yaping & Wang, Ying & Huang, Diangui, 2019. "Supercritical CO2 Brayton cycle: A state-of-the-art review," Energy, Elsevier, vol. 189(C).
  16. Li, Ming-Jia & Xu, Jin-Liang & Cao, Feng & Guo, Jia-Qi & Tong, Zi-Xiang & Zhu, Han-Hui, 2019. "The investigation of thermo-economic performance and conceptual design for the miniaturized lead-cooled fast reactor composing supercritical CO2 power cycle," Energy, Elsevier, vol. 173(C), pages 174-195.
  17. Cao, Yue & Rattner, Alexander S. & Dai, Yiping, 2018. "Thermoeconomic analysis of a gas turbine and cascaded CO2 combined cycle using thermal oil as an intermediate heat-transfer fluid," Energy, Elsevier, vol. 162(C), pages 1253-1268.
  18. Jiang, Yuemao & Ma, Yue & Han, Fenghui & Ji, Yulong & Cai, Wenjian & Wang, Zhe, 2023. "Assessment and optimization of a novel waste heat stepped utilization system integrating partial heating sCO2 cycle and ejector refrigeration cycle using zeotropic mixtures for gas turbine," Energy, Elsevier, vol. 265(C).
  19. Fan, Gang & Lu, Xiaochen & Chen, Kang & Zhang, Yicen & Han, Zihao & Yu, Haibin & Dai, Yiping, 2022. "Comparative analysis on design and off-design performance of novel cascade CO2 combined cycles for gas turbine waste heat utilization," Energy, Elsevier, vol. 254(PA).
  20. Faiza Brahimi & Baya Madani & Messaouda Ghemmadi, 2022. "Comparative Thermodynamic Environmental and Economic Analyses of Combined Cycles Using Air and Supercritical CO 2 in the Bottoming Cycles for Power Generation by Gas Turbine Waste Heat Recovery," Energies, MDPI, vol. 15(23), pages 1-21, November.
  21. Crespi, Francesco & Gavagnin, Giacomo & Sánchez, David & Martínez, Gonzalo S., 2017. "Supercritical carbon dioxide cycles for power generation: A review," Applied Energy, Elsevier, vol. 195(C), pages 152-183.
  22. Zhou, Aozheng & Li, Xue-song & Ren, Xiao-dong & Gu, Chun-wei, 2020. "Improvement design and analysis of a supercritical CO2/transcritical CO2 combined cycle for offshore gas turbine waste heat recovery," Energy, Elsevier, vol. 210(C).
  23. Rafał Kowalski & Szymon Kuczyński & Mariusz Łaciak & Adam Szurlej & Tomasz Włodek, 2020. "A Case Study of the Supercritical CO 2 -Brayton Cycle at a Natural Gas Compression Station," Energies, MDPI, vol. 13(10), pages 1-18, May.
  24. Vedran Mrzljak & Igor Poljak & Maro Jelić & Jasna Prpić-Oršić, 2023. "Thermodynamic Analysis and Improvement Potential of Helium Closed Cycle Gas Turbine Power Plant at Four Loads," Energies, MDPI, vol. 16(15), pages 1-26, July.
  25. Giovanni Manente & Mário Costa, 2020. "On the Conceptual Design of Novel Supercritical CO 2 Power Cycles for Waste Heat Recovery," Energies, MDPI, vol. 13(2), pages 1-31, January.
  26. Chen, Zhewen & Wang, Yanjuan & Zhang, Xiaosong, 2020. "Energy and exergy analyses of S–CO2 coal-fired power plant with reheating processes," Energy, Elsevier, vol. 211(C).
  27. Li, Xiaodong & Jinxi, Wang, 2023. "A novel process for the simultaneous production of methanol, oxygen, and electricity using a PEM electrolyzer and agricultural-based landfill gas-fed oxyfuel combustion power plant," Energy, Elsevier, vol. 284(C).
  28. Qi, Yinke & Huang, Diangui, 2022. "Energy and exergy analysis of supercritical/transcritical CO2 cycles for water injected hydrogen gas turbine," Energy, Elsevier, vol. 260(C).
  29. Zhang, Ruiyuan & Su, Wen & Lin, Xinxing & Zhou, Naijun & Zhao, Li, 2020. "Thermodynamic analysis and parametric optimization of a novel S–CO2 power cycle for the waste heat recovery of internal combustion engines," Energy, Elsevier, vol. 209(C).
  30. Zhou, Jing & Zhu, Meng & Su, Sheng & Chen, Lei & Xu, Jun & Hu, Song & Wang, Yi & Jiang, Long & Zhong, Wenqi & Xiang, Jun, 2020. "Numerical analysis and modified thermodynamic calculation methods for the furnace in the 1000 MW supercritical CO2 coal-fired boiler," Energy, Elsevier, vol. 212(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.