IDEAS home Printed from https://ideas.repec.org/r/eee/enepol/v104y2017icp240-252.html

Assessing environmental performance in the European Union: Eco-innovation versus catching-up

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Keyi Zhang & Ke Zhang & Qian Zhou, 2025. "How Do National Key Development Zones Affect Land-Use Eco-Efficiency? Evidence from Counties in the Upper Reaches of the Yangtze River," Sustainability, MDPI, vol. 17(16), pages 1-23, August.
  2. Djula Borozan, 2023. "Institutions and Environmentally Adjusted Efficiency," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 14(4), pages 4489-4510, December.
  3. Vaninsky, Alexander, 2018. "Energy-environmental efficiency and optimal restructuring of the global economy," Energy, Elsevier, vol. 153(C), pages 338-348.
  4. Tomas Balezentis & Zhiyang Shen, 2017. "An environmental Luenberger-Hicks-Moorsteen. Total Factor Productivityindicator for OECD Countries," Working Papers 2017-EQM-02, IESEG School of Management.
  5. Tao Ding & Zhixiang Zhou & Qianzhi Dai & Liang Liang, 2020. "Analysis of China’s Regional Economic Environmental Performance: A Non-radial Multi-objective DEA Approach," Computational Economics, Springer;Society for Computational Economics, vol. 55(4), pages 1209-1231, April.
  6. Jové Llopis, Elisenda, & Segarra Blasco, Agustí, 1958-, 2017. "Eco-strategies and firm growth in European SMEs," Working Papers 2072/306976, Universitat Rovira i Virgili, Department of Economics.
  7. Simionescu, Mihaela, 2021. "The nexus between economic development and pollution in the European Union new member states. The role of renewable energy consumption," Renewable Energy, Elsevier, vol. 179(C), pages 1767-1780.
  8. Wang, H. & Zhou, P., 2018. "Multi-country comparisons of CO2 emission intensity: The production-theoretical decomposition analysis approach," Energy Economics, Elsevier, vol. 74(C), pages 310-320.
  9. Zeng, Juying & Blanco-González-Tejero, Cristina & Sendra, F. Javier, 2023. "The spatial difference-in-difference measurement of policy effect of environmental protection interview on green innovation," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
  10. E. Njuki & C.J. O’Donnell, 2025. "Sustainable Productivity Change in the U.S. Dairy Sector," CEPA Working Papers Series WP012025, School of Economics, University of Queensland, Australia.
  11. Torrecillas, Celia & Fernández, Sara & García-García, Claudia, 2023. "Drivers to increase eco-efficiencies in Uruguay, Peru, and Panama," Energy Policy, Elsevier, vol. 183(C).
  12. Elisenda Jové-Llopis & Agustí Segarra-Blasco, 2018. "Eco-Efficiency Actions and Firm Growth in European SMEs," Sustainability, MDPI, vol. 10(1), pages 1-26, January.
  13. Monastyrenko, Evgenii, 2017. "Eco-efficiency outcomes of mergers and acquisitions in the European electricity industry," Energy Policy, Elsevier, vol. 107(C), pages 258-277.
  14. Jové Llopis, Elisenda, & Segarra Blasco, Agustí, 1958-, 2018. "Determinants of energy efficiency and renewable energy in European SMEs," Working Papers 2072/306520, Universitat Rovira i Virgili, Department of Economics.
  15. Luqi Wang & Xiaolong Xue & Yue Shi & Zeyu Wang & Ankang Ji, 2018. "A Dynamic Analysis to Evaluate the Environmental Performance of Cities in China," Sustainability, MDPI, vol. 10(3), pages 1-16, March.
  16. Djula Borozan, 2021. "Technical Efficiency and Productivity Change in the European Union with Undesirable Output Considered," Energies, MDPI, vol. 14(16), pages 1-15, August.
  17. Arkadiusz Świadek & Jadwiga Gorączkowska & Karolina Godzisz, 2022. "Conditions Driving Eco-Innovation in a Catching-Up Country—ICT vs. Industry in Poland," Energies, MDPI, vol. 15(15), pages 1-21, July.
  18. Zhiyang Shen & Kristiaan Kerstens & Tomas Baležentis, 2025. "An environmental Luenberger–Hicks–Moorsteen total factor productivity indicator: empirical analysis considering undesirable outputs either as inputs or outputs, and attention for infeasibilities," Annals of Operations Research, Springer, vol. 347(1), pages 241-263, April.
  19. Adrián Rabadán & Ángela Triguero & Ángela Gonzalez-Moreno, 2020. "Cooperation as the Secret Ingredient in the Recipe to Foster Internal Technological Eco-Innovation in the Agri-Food Industry," IJERPH, MDPI, vol. 17(7), pages 1-19, April.
  20. Chunfeng Dong & Jun He & Longzheng Du & Jing Yang, 2023. "Executives with Environmental Experience and Corporate Environmental Performance: Evidence from China’s A-Share Listed Companies," Sustainability, MDPI, vol. 15(20), pages 1-22, October.
  21. Aleksander Grzelak, 2020. "The Objectives of Farm Operations—Evidence from a Region in Poland," Agriculture, MDPI, vol. 10(10), pages 1-20, October.
  22. Bampatsou, Christina & Halkos, George, 2018. "Dynamics of productivity taking into consideration the impact of energy consumption and environmental degradation," Energy Policy, Elsevier, vol. 120(C), pages 276-283.
  23. Christian Stetter & Johannes Sauer, 2022. "Greenhouse Gas Emissions and Eco-Performance at Farm Level: A Parametric Approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 81(3), pages 617-647, March.
  24. Tianyi Zeng & Hong Jin & Zhifei Geng & Zihang Kang & Zichen Zhang, 2022. "The Effect of Urban Shrinkage on Carbon Dioxide Emissions Efficiency in Northeast China," IJERPH, MDPI, vol. 19(9), pages 1-18, May.
  25. Armand Kasztelan & Anna Nowak, 2020. "Construction and Empirical Verification of the Agri-Environmental Index (AEI) as a Tool for Assessing the Green Performance of Agriculture," Energies, MDPI, vol. 14(1), pages 1-12, December.
  26. Amer Ait Sidhoum & Philipp Mennig & Johannes Sauer, 2023. "Do agri-environment measures help improve environmental and economic efficiency? Evidence from Bavarian dairy farmers," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 50(3), pages 918-953.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.