IDEAS home Printed from https://ideas.repec.org/r/eee/empfin/v6y1999i5p431-455.html

Computing value at risk with high frequency data

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Eduardo Rossi & Dean Fantazzini, 2015. "Long Memory and Periodicity in Intraday Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 13(4), pages 922-961.
  2. Stavros Degiannakis & Pamela Dent & Christos Floros, 2014. "A Monte Carlo Simulation Approach to Forecasting Multi-period Value-at-Risk and Expected Shortfall Using the FIGARCH-skT Specification," Manchester School, University of Manchester, vol. 82(1), pages 71-102, January.
  3. David Veredas & Juan Rodriguez-Poo & Antoni Espasa, 2001. "On the (Intradaily) Seasonality and Dynamics of a Financial Point Process : A Semiparametric Approach," Working Papers 2001-19, Center for Research in Economics and Statistics.
  4. David Mcmillan & Alan Speight, 2008. "Long-memory in high-frequency exchange rate volatility under temporal aggregation," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 251-261.
  5. Miguel A. Ferreira, 2005. "Evaluating Interest Rate Covariance Models Within a Value-at-Risk Framework," Journal of Financial Econometrics, Oxford University Press, vol. 3(1), pages 126-168.
  6. Morana, Claudio & Beltratti, Andrea, 2004. "Structural change and long-range dependence in volatility of exchange rates: either, neither or both?," Journal of Empirical Finance, Elsevier, vol. 11(5), pages 629-658, December.
  7. GIOT, Pierre, 2000. "Intraday value-at-risk," LIDAM Discussion Papers CORE 2000045, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  8. Mike So & Rui Xu, 2013. "Forecasting Intraday Volatility and Value-at-Risk with High-Frequency Data," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 20(1), pages 83-111, March.
  9. Tobias Eckernkemper & Bastian Gribisch, 2021. "Intraday conditional value at risk: A periodic mixed‐frequency generalized autoregressive score approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 883-910, August.
  10. So, Mike K.P. & Yu, Philip L.H., 2006. "Empirical analysis of GARCH models in value at risk estimation," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 16(2), pages 180-197, April.
  11. Georgios Chortareas & John Nankervis & Ying Jiang, 2007. "Forecasting Exchange Rate Volatility with High Frequency Data: Is the Euro Different?," Money Macro and Finance (MMF) Research Group Conference 2006 79, Money Macro and Finance Research Group.
  12. Chortareas, Georgios & Jiang, Ying & Nankervis, John. C., 2011. "Forecasting exchange rate volatility using high-frequency data: Is the euro different?," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1089-1107, October.
  13. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
  14. José Antonio Núñez-Mora & Mario Iván Contreras-Valdez & Roberto Joaquín Santillán-Salgado, 2023. "Risk Premium of Bitcoin and Ethereum during the COVID-19 and Non-COVID-19 Periods: A High-Frequency Approach," Mathematics, MDPI, vol. 11(20), pages 1-20, October.
  15. Chu, Carlin C.F. & Lam, K.P., 2011. "Modeling intraday volatility: A new consideration," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 21(3), pages 388-418, July.
  16. repec:bla:jecsur:v:22:y:2008:i:4:p:711-751 is not listed on IDEAS
  17. Nekhili, Ramzi & Altay-Salih, Aslihan & Gençay, Ramazan, 2002. "Exploring exchange rate returns at different time horizons," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 313(3), pages 671-682.
  18. Min Liu & Chien‐Chiang Lee & Wei‐Chong Choo, 2021. "An empirical study on the role of trading volume and data frequency in volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 792-816, August.
  19. Maheu John, 2005. "Can GARCH Models Capture Long-Range Dependence?," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 9(4), pages 1-43, December.
  20. Morana, Claudio & Beltratti, Andrea, 2000. "Central bank interventions and exchange rates: an analysis with high frequency data," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 10(3-4), pages 349-362, December.
  21. Wei Sun & Svetlozar Rachev & Frank J. Fabozzi, 2009. "A New Approach for Using Lévy Processes for Determining High‐Frequency Value‐at‐Risk Predictions," European Financial Management, European Financial Management Association, vol. 15(2), pages 340-361, March.
  22. Detlef Seese & Christof Weinhardt & Frank Schlottmann (ed.), 2008. "Handbook on Information Technology in Finance," International Handbooks on Information Systems, Springer, number 978-3-540-49487-4, March.
  23. Xiufeng Yan, 2021. "Autoregressive conditional duration modelling of high frequency data," Papers 2111.02300, arXiv.org.
  24. Coudert, Virginie & Gex, Mathieu, 2010. "Contagion inside the credit default swaps market: The case of the GM and Ford crisis in 2005," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 20(2), pages 109-134, April.
  25. Nuno Cassola & Claudio Morana, 2006. "Volatility of interest rates in the euro area: Evidence from high frequency data," The European Journal of Finance, Taylor & Francis Journals, vol. 12(6-7), pages 513-528.
  26. Dionne, Georges & Duchesne, Pierre & Pacurar, Maria, 2009. "Intraday Value at Risk (IVaR) using tick-by-tick data with application to the Toronto Stock Exchange," Journal of Empirical Finance, Elsevier, vol. 16(5), pages 777-792, December.
  27. Xiufeng Yan, 2021. "Multiplicative Component GARCH Model of Intraday Volatility," Papers 2111.02376, arXiv.org.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.