IDEAS home Printed from https://ideas.repec.org/r/eee/ejores/v212y2011i2p417-428.html
   My bibliography  Save this item

Robust optimization and portfolio selection: The cost of robustness

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Yam, Sheung Chi Phillip & Yang, Hailiang & Yuen, Fei Lung, 2016. "Optimal asset allocation: Risk and information uncertainty," European Journal of Operational Research, Elsevier, vol. 251(2), pages 554-561.
  2. Wong, Man Hong, 2013. "Investment models based on clustered scenario trees," European Journal of Operational Research, Elsevier, vol. 227(2), pages 314-324.
  3. António Alberto Santos & Ana Margarida Monteiro & Rui Pascoal, 2014. "Portfolio Choice under Parameter Uncertainty: Bayesian Analysis and Robust Optimization Comparison," GEMF Working Papers 2014-25, GEMF, Faculty of Economics, University of Coimbra.
  4. Sarhadi, Hassan & Naoum-Sawaya, Joe & Verma, Manish, 2020. "A robust optimization approach to locating and stockpiling marine oil-spill response facilities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
  5. Lorenzo Reus & Frank J. Fabozzi, 2021. "Robust Solutions to the Life-Cycle Consumption Problem," Computational Economics, Springer;Society for Computational Economics, vol. 57(2), pages 481-499, February.
  6. Panos Xidonas & Ralph Steuer & Christis Hassapis, 2020. "Robust portfolio optimization: a categorized bibliographic review," Annals of Operations Research, Springer, vol. 292(1), pages 533-552, September.
  7. Tamiz, Mehrdad & Azmi, Rania A. & Jones, Dylan F., 2013. "On selecting portfolio of international mutual funds using goal programming with extended factors," European Journal of Operational Research, Elsevier, vol. 226(3), pages 560-576.
  8. Gabrel, Virginie & Murat, Cécile & Thiele, Aurélie, 2014. "Recent advances in robust optimization: An overview," European Journal of Operational Research, Elsevier, vol. 235(3), pages 471-483.
  9. Zhao, Daping & Bai, Lin & Fang, Yong & Wang, Shouyang, 2022. "Multi‐period portfolio selection with investor views based on scenario tree," Applied Mathematics and Computation, Elsevier, vol. 418(C).
  10. Kolm, Petter N. & Tütüncü, Reha & Fabozzi, Frank J., 2014. "60 Years of portfolio optimization: Practical challenges and current trends," European Journal of Operational Research, Elsevier, vol. 234(2), pages 356-371.
  11. Juan S. Borrero & Leonardo Lozano, 2021. "Modeling Defender-Attacker Problems as Robust Linear Programs with Mixed-Integer Uncertainty Sets," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1570-1589, October.
  12. Alireza Ghahtarani & Ahmed Saif & Alireza Ghasemi, 2022. "Robust portfolio selection problems: a comprehensive review," Operational Research, Springer, vol. 22(4), pages 3203-3264, September.
  13. Sally G. Arcidiacono & Damiano Rossello, 2022. "A hybrid approach to the discrepancy in financial performance’s robustness," Operational Research, Springer, vol. 22(5), pages 5441-5476, November.
  14. Jafarzadeh, M. & Tareghian, H.R. & Rahbarnia, F. & Ghanbari, R., 2015. "Optimal selection of project portfolios using reinvestment strategy within a flexible time horizon," European Journal of Operational Research, Elsevier, vol. 243(2), pages 658-664.
  15. Sandra Cruz Caçador & Pedro Manuel Cortesão Godinho & Joana Maria Pina Cabral Matos Dias, 2022. "A minimax regret portfolio model based on the investor’s utility loss," Operational Research, Springer, vol. 22(1), pages 449-484, March.
  16. Selim Mankaï, 2014. "Data-Driven Robust Optimization with Application to Portfolio Management," Working Papers 2014-104, Department of Research, Ipag Business School.
  17. Mehdi Ansari & Juan S. Borrero & Leonardo Lozano, 2023. "Robust Minimum-Cost Flow Problems Under Multiple Ripple Effect Disruptions," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 83-103, January.
  18. Selim Mankaï & Khaled Guesmi, 2015. "Robust Portfolio Protection: A Scenarios-based Approach," Bankers, Markets & Investors, ESKA Publishing, issue 138, pages 30-44, September.
  19. repec:ipg:wpaper:2014-394 is not listed on IDEAS
  20. Xidonas, Panos & Hassapis, Christis & Soulis, John & Samitas, Aristeidis, 2017. "Robust minimum variance portfolio optimization modelling under scenario uncertainty," Economic Modelling, Elsevier, vol. 64(C), pages 60-71.
  21. I-Chen Lu & Kai-Hong Tee & Baibing Li, 2019. "Asset allocation with multiple analysts’ views: a robust approach," Journal of Asset Management, Palgrave Macmillan, vol. 20(3), pages 215-228, May.
  22. Jang Ho Kim & Woo Chang Kim & Frank J. Fabozzi, 2014. "Recent Developments in Robust Portfolios with a Worst-Case Approach," Journal of Optimization Theory and Applications, Springer, vol. 161(1), pages 103-121, April.
  23. Soleimanian, Azam & Salmani Jajaei, Ghasemali, 2013. "Robust nonlinear optimization with conic representable uncertainty set," European Journal of Operational Research, Elsevier, vol. 228(2), pages 337-344.
  24. Benati, S. & Conde, E., 2022. "A relative robust approach on expected returns with bounded CVaR for portfolio selection," European Journal of Operational Research, Elsevier, vol. 296(1), pages 332-352.
  25. Sandra Caçador & Joana Matos Dias & Pedro Godinho, 2020. "Global minimum variance portfolios under uncertainty: a robust optimization approach," Journal of Global Optimization, Springer, vol. 76(2), pages 267-293, February.
  26. Crespi, Giovanni P. & Kuroiwa, Daishi & Rocca, Matteo, 2018. "Robust optimization: Sensitivity to uncertainty in scalar and vector cases, with applications," Operations Research Perspectives, Elsevier, vol. 5(C), pages 113-119.
  27. Fonseca, Raquel J. & Rustem, Berç, 2012. "International portfolio management with affine policies," European Journal of Operational Research, Elsevier, vol. 223(1), pages 177-187.
  28. Hatami-Marbini, Adel & Arabmaldar, Aliasghar, 2021. "Robustness of Farrell cost efficiency measurement under data perturbations: Evidence from a US manufacturing application," European Journal of Operational Research, Elsevier, vol. 295(2), pages 604-620.
  29. Kobayashi, Ken & Takano, Yuichi & Nakata, Kazuhide, 2023. "Cardinality-constrained distributionally robust portfolio optimization," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1173-1182.
  30. Selim Mankai & Khaled Guesmi, 2014. "Robust Portfolio Protection: A Scenarios-Based Approach," Working Papers hal-04141326, HAL.
  31. Li, Xiang & Shou, Biying & Qin, Zhongfeng, 2012. "An expected regret minimization portfolio selection model," European Journal of Operational Research, Elsevier, vol. 218(2), pages 484-492.
  32. Ricardo M. Lima & Antonio J. Conejo & Loïc Giraldi & Olivier Le Maître & Ibrahim Hoteit & Omar M. Knio, 2022. "Risk-Averse Stochastic Programming vs. Adaptive Robust Optimization: A Virtual Power Plant Application," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1795-1818, May.
  33. Fliedner, Thomas & Liesiö, Juuso, 2016. "Adjustable robustness for multi-attribute project portfolio selection," European Journal of Operational Research, Elsevier, vol. 252(3), pages 931-946.
  34. Xidonas, Panos & Mavrotas, George & Hassapis, Christis & Zopounidis, Constantin, 2017. "Robust multiobjective portfolio optimization: A minimax regret approach," European Journal of Operational Research, Elsevier, vol. 262(1), pages 299-305.
  35. Alireza Ghahtarani & Ahmed Saif & Alireza Ghasemi, 2021. "Robust Portfolio Selection Problems: A Comprehensive Review," Papers 2103.13806, arXiv.org, revised Jan 2022.
  36. Yu, Jing-Rung & Paul Chiou, Wan-Jiun & Hsin, Yi-Ting & Sheu, Her-Jiun, 2022. "Omega portfolio models with floating return threshold," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 743-758.
  37. Gorissen, Bram L. & Yanıkoğlu, İhsan & den Hertog, Dick, 2015. "A practical guide to robust optimization," Omega, Elsevier, vol. 53(C), pages 124-137.
  38. Fernandes, Betina & Street, Alexandre & Valladão, Davi & Fernandes, Cristiano, 2016. "An adaptive robust portfolio optimization model with loss constraints based on data-driven polyhedral uncertainty sets," European Journal of Operational Research, Elsevier, vol. 255(3), pages 961-970.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.