IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v218y2012i2p484-492.html
   My bibliography  Save this article

An expected regret minimization portfolio selection model

Author

Listed:
  • Li, Xiang
  • Shou, Biying
  • Qin, Zhongfeng

Abstract

Fuzzy portfolio selection has been widely studied within the framework of the credibility theory. However, all existing models provide only concentrated investment solutions, which contradicts the risk diversification concept in the classical portfolio selection theory. In this paper, we propose an expected regret minimization model, which minimizes the expected value of the distance between the maximum return and the obtained return associated with each portfolio. We prove that our model is advantageous for obtaining distributive investment and reducing investor regret. The effectiveness of the model is demonstrated by using an example of a portfolio selection problem comprising ten securities in the Shanghai Stock Exchange 180 Index.

Suggested Citation

  • Li, Xiang & Shou, Biying & Qin, Zhongfeng, 2012. "An expected regret minimization portfolio selection model," European Journal of Operational Research, Elsevier, vol. 218(2), pages 484-492.
  • Handle: RePEc:eee:ejores:v:218:y:2012:i:2:p:484-492
    DOI: 10.1016/j.ejor.2011.11.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037722171101006X
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Loomes, Graham & Sugden, Robert, 1982. "Regret Theory: An Alternative Theory of Rational Choice under Uncertainty," Economic Journal, Royal Economic Society, vol. 92(368), pages 805-824, December.
    2. Yu, Mei & Takahashi, Satoru & Inoue, Hiroshi & Wang, Shouyang, 2010. "Dynamic portfolio optimization with risk control for absolute deviation model," European Journal of Operational Research, Elsevier, vol. 201(2), pages 349-364, March.
    3. Gregory, Christine & Darby-Dowman, Ken & Mitra, Gautam, 2011. "Robust optimization and portfolio selection: The cost of robustness," European Journal of Operational Research, Elsevier, vol. 212(2), pages 417-428, July.
    4. Tanaka, Hideo & Guo, Peijun, 1999. "Portfolio selection based on upper and lower exponential possibility distributions," European Journal of Operational Research, Elsevier, vol. 114(1), pages 115-126, April.
    5. Huang, Dashan & Zhu, Shushang & Fabozzi, Frank J. & Fukushima, Masao, 2010. "Portfolio selection under distributional uncertainty: A relative robust CVaR approach," European Journal of Operational Research, Elsevier, vol. 203(1), pages 185-194, May.
    6. Zhang, Wei-Guo & Zhang, Xi-Li & Xiao, Wei-Lin, 2009. "Portfolio selection under possibilistic mean-variance utility and a SMO algorithm," European Journal of Operational Research, Elsevier, vol. 197(2), pages 693-700, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:spr:annopr:v:244:y:2016:i:2:d:10.1007_s10479-016-2117-4 is not listed on IDEAS
    2. Guo, Sini & Yu, Lean & Li, Xiang & Kar, Samarjit, 2016. "Fuzzy multi-period portfolio selection with different investment horizons," European Journal of Operational Research, Elsevier, vol. 254(3), pages 1026-1035.
    3. Tsaur, Ruey-Chyn, 2013. "Fuzzy portfolio model with different investor risk attitudes," European Journal of Operational Research, Elsevier, vol. 227(2), pages 385-390.
    4. Huang, Xiaoxia & Ying, Haiyao, 2013. "Risk index based models for portfolio adjusting problem with returns subject to experts' evaluations," Economic Modelling, Elsevier, vol. 30(C), pages 61-66.
    5. Lioui, Abraham & Poncet, Patrice, 2013. "Optimal benchmarking for active portfolio managers," European Journal of Operational Research, Elsevier, vol. 226(2), pages 268-276.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:218:y:2012:i:2:p:484-492. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/eor .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.