My bibliography
Save this item
Analysis and forecasting of the carbon price using multi—resolution singular value decomposition and extreme learning machine optimized by adaptive whale optimization algorithm
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Sha Liu & Yiting Zhang & Junping Wang & Danlei Feng, 2024. "Fluctuations and Forecasting of Carbon Price Based on A Hybrid Ensemble Learning GARCH-LSTM-Based Approach: A Case of Five Carbon Trading Markets in China," Sustainability, MDPI, vol. 16(4), pages 1-23, February.
- Chun-Yao Lee & Guang-Lin Zhuo, 2021. "A Hybrid Whale Optimization Algorithm for Global Optimization," Mathematics, MDPI, vol. 9(13), pages 1-19, June.
- Wu, Qunli & Ma, Zhe & Meng, Fanxing, 2022. "Long-term impacts of carbon allowance allocation in China: An IC-DCGE model optimized by the hypothesis of imperfectly competitive market," Energy, Elsevier, vol. 241(C).
- Tang, Ling & Wang, Haohan & Li, Ling & Yang, Kaitong & Mi, Zhifu, 2020. "Quantitative models in emission trading system research: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
- Ahmad, Tanveer & Madonski, Rafal & Zhang, Dongdong & Huang, Chao & Mujeeb, Asad, 2022. "Data-driven probabilistic machine learning in sustainable smart energy/smart energy systems: Key developments, challenges, and future research opportunities in the context of smart grid paradigm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
- Cai, Yi & Tang, Zhenpeng & Chen, Ying, 2024. "Can real-time investor sentiment help predict the high-frequency stock returns? Evidence from a mixed-frequency-rolling decomposition forecasting method," The North American Journal of Economics and Finance, Elsevier, vol. 72(C).
- Ding, Lili & Zhang, Rui & Zhao, Xin, 2024. "Forecasting carbon price in China unified carbon market using a novel hybrid method with three-stage algorithm and long short-term memory neural networks," Energy, Elsevier, vol. 288(C).
- Shanglei Chai & Zixuan Zhang & Zhen Zhang, 2025. "Carbon price prediction for China's ETS pilots using variational mode decomposition and optimized extreme learning machine," Annals of Operations Research, Springer, vol. 345(2), pages 809-830, February.
- Lei, Heng & Xue, Minggao & Liu, Huiling, 2022. "Probability distribution forecasting of carbon allowance prices: A hybrid model considering multiple influencing factors," Energy Economics, Elsevier, vol. 113(C).
- Qing Liu & Huina Jin & Xiang Bai & Jinliang Zhang, 2023. "Prediction and Analysis of the Price of Carbon Emission Rights in Shanghai: Under the Background of COVID-19 and the Russia–Ukraine Conflict," Mathematics, MDPI, vol. 11(14), pages 1-16, July.
- Li, Jingmiao & Liu, Dehong, 2023. "Carbon price forecasting based on secondary decomposition and feature screening," Energy, Elsevier, vol. 278(PA).
- Sun, Qingqing & Chen, Hong & Long, Ruyin & Chen, Jiawei, 2024. "Integrated prediction of carbon price in China based on heterogeneous structural information and wall-value constraints," Energy, Elsevier, vol. 306(C).
- Jianguo Zhou & Xuejing Huo & Xiaolei Xu & Yushuo Li, 2019. "Forecasting the Carbon Price Using Extreme-Point Symmetric Mode Decomposition and Extreme Learning Machine Optimized by the Grey Wolf Optimizer Algorithm," Energies, MDPI, vol. 12(5), pages 1-22, March.
- Yongjie Zhang & Yue Li & Dehua Shen, 2022. "Investor Attention and the Carbon Emission Markets in China: A Nonparametric Wavelet-Based Causality Test," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 29(1), pages 123-137, March.
- Jujie Wang & Maolin He, 2025. "Extended decomposition ensemble framework based on full data analysis and optimized combination with relaxed boundary for carbon price forecasting," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(1), pages 909-942, January.
- Sun, Wei & Huang, Chenchen, 2020. "A novel carbon price prediction model combines the secondary decomposition algorithm and the long short-term memory network," Energy, Elsevier, vol. 207(C).
- Huang, Zhehao & Dong, Hao & Jia, Shuaishuai, 2022. "Equilibrium pricing for carbon emission in response to the target of carbon emission peaking," Energy Economics, Elsevier, vol. 112(C).
- Jianguo Zhou & Qiqi Wang, 2021. "Forecasting Carbon Price with Secondary Decomposition Algorithm and Optimized Extreme Learning Machine," Sustainability, MDPI, vol. 13(15), pages 1-17, July.
- Li, Guohui & Ning, Zhiyuan & Yang, Hong & Gao, Lipeng, 2022. "A new carbon price prediction model," Energy, Elsevier, vol. 239(PD).
- Yin, Hao & Yin, Yiding & Li, Hanhong & Zhu, Jianbin & Xian, Zikang & Tang, Yanshu & Xiao, Liexi & Rong, Jiayu & Li, Chen & Zhang, Haitao & Xie, Zhifeng & Meng, Anbo, 2025. "Carbon emissions trading price forecasting based on temporal-spatial multidimensional collaborative attention network and segment imbalance regression," Applied Energy, Elsevier, vol. 377(PA).
- Xingmin Zhang & Zhiyong Li & Yiming Zhao & Lan Wang, 2025. "Carbon trading and COVID-19: a hybrid machine learning approach for international carbon price forecasting," Annals of Operations Research, Springer, vol. 345(2), pages 1267-1295, February.
- Zhang, Tingting & Tang, Zhenpeng & Wu, Junchuan & Du, Xiaoxu & Chen, Kaijie, 2021. "Multi-step-ahead crude oil price forecasting based on two-layer decomposition technique and extreme learning machine optimized by the particle swarm optimization algorithm," Energy, Elsevier, vol. 229(C).
- Lunyou Pei & Bing Wang & Ying Liu & Xiaoling Liu, 2023. "Optimization of Preventive Maintenance Timing of Highway Bridges Considering China’s “Dual Carbon” Target," Sustainability, MDPI, vol. 15(23), pages 1-15, November.
- Sun, Wei & Zhang, Junjian, 2022. "A novel carbon price prediction model based on optimized least square support vector machine combining characteristic-scale decomposition and phase space reconstruction," Energy, Elsevier, vol. 253(C).
- Zhang, Meng & Kang, Guoqing & Wu, Lifeng & Guan, Yong, 2022. "A method for capacity prediction of lithium-ion batteries under small sample conditions," Energy, Elsevier, vol. 238(PC).
- Qi, Shaozhou & Cheng, Shihan & Tan, Xiujie & Feng, Shenghao & Zhou, Qi, 2022. "Predicting China's carbon price based on a multi-scale integrated model," Applied Energy, Elsevier, vol. 324(C).
- Jianguo Zhou & Dongfeng Chen, 2021. "Carbon Price Forecasting Based on Improved CEEMDAN and Extreme Learning Machine Optimized by Sparrow Search Algorithm," Sustainability, MDPI, vol. 13(9), pages 1-20, April.
- Huang, Yumeng & Dai, Xingyu & Wang, Qunwei & Zhou, Dequn, 2021. "A hybrid model for carbon price forecastingusing GARCH and long short-term memory network," Applied Energy, Elsevier, vol. 285(C).
- Zhuolin Wu & Jiaqi Zhou & Xiaobing Yu, 2025. "Forecast Natural Gas Price by an Extreme Learning Machine Framework Based on Multi-Strategy Grey Wolf Optimizer and Signal Decomposition," Sustainability, MDPI, vol. 17(12), pages 1-37, June.
- Liu, Shuihan & Li, Mingchen & Yang, Kun & Wei, Yunjie & Wang, Shouyang, 2025. "From forecasting to trading: A multimodal-data-driven approach to reversing carbon market losses," Energy Economics, Elsevier, vol. 144(C).
- Cai, Xiaotong & Yuan, Bo & Wu, Chao, 2025. "An integrated CEEMDAN and TCN-LSTM deep learning framework for forecasting," International Review of Financial Analysis, Elsevier, vol. 98(C).
- Alexandra Horobet & Sabri Boubaker & Lucian Belascu & Cristina Carmencita Negreanu & Zeno Dinca, 2024. "Technology-driven advancements: Mapping the landscape of algorithmic trading literature," Post-Print hal-04990283, HAL.
- Zhang, Chu & Ji, Chunlei & Hua, Lei & Ma, Huixin & Nazir, Muhammad Shahzad & Peng, Tian, 2022. "Evolutionary quantile regression gated recurrent unit network based on variational mode decomposition, improved whale optimization algorithm for probabilistic short-term wind speed prediction," Renewable Energy, Elsevier, vol. 197(C), pages 668-682.
- Niu, Xinsong & Wang, Jiyang & Wei, Danxiang & Zhang, Lifang, 2022. "A combined forecasting framework including point prediction and interval prediction for carbon emission trading prices," Renewable Energy, Elsevier, vol. 201(P1), pages 46-59.
- Feng, Zhengyuan & Sun, Yuheng & Ning, Jun & Tang, Shoujuan & Liu, Guangxin & Liu, Fangtao & Li, Yang & Shi, Lei, 2025. "Implementing a provincial-level universal daily industrial carbon emissions prediction by fine-tuning the large language model," Applied Energy, Elsevier, vol. 383(C).
- Gao, Feng & Chi, Hong & Shao, Xueyan, 2021. "Forecasting residential electricity consumption using a hybrid machine learning model with online search data," Applied Energy, Elsevier, vol. 300(C).
- Song, Chao & Wang, Tao & Chen, Xiaohong & Shao, Quanxi & Zhang, Xianqi, 2023. "Ensemble framework for daily carbon dioxide emissions forecasting based on the signal decomposition–reconstruction model," Applied Energy, Elsevier, vol. 345(C).
- Taiyong Li & Yingrui Zhou & Xinsheng Li & Jiang Wu & Ting He, 2019. "Forecasting Daily Crude Oil Prices Using Improved CEEMDAN and Ridge Regression-Based Predictors," Energies, MDPI, vol. 12(19), pages 1-25, September.
- Xu, Yingying & Dai, Yifan & Guo, Lingling & Chen, Jingjing, 2024. "Leveraging machine learning to forecast carbon returns: Factors from energy markets," Applied Energy, Elsevier, vol. 357(C).
- Zhou, Feite & Huang, Zhehao & Zhang, Changhong, 2022. "Carbon price forecasting based on CEEMDAN and LSTM," Applied Energy, Elsevier, vol. 311(C).
- Horobet, Alexandra & Boubaker, Sabri & Belascu, Lucian & Negreanu, Cristina Carmencita & Dinca, Zeno, 2024. "Technology-driven advancements: Mapping the landscape of algorithmic trading literature," Technological Forecasting and Social Change, Elsevier, vol. 209(C).
- Zhang, Wen & Wu, Zhibin & Zeng, Xiaojun & Zhu, Changhui, 2023. "An ensemble dynamic self-learning model for multiscale carbon price forecasting," Energy, Elsevier, vol. 263(PC).
- Liao, Haolan & Wu, Di & Wang, Yuhan & Lyu, Zeyu & Sun, Hongmei & Nie, Yongyou & He, He, 2022. "Impacts of carbon trading mechanism on closed-loop supply chain: A case study of stringer pallet remanufacturing," Socio-Economic Planning Sciences, Elsevier, vol. 81(C).