Fluctuations and Forecasting of Carbon Price Based on A Hybrid Ensemble Learning GARCH-LSTM-Based Approach: A Case of Five Carbon Trading Markets in China
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- repec:dau:papers:123456789/6969 is not listed on IDEAS
- Huang, Yumeng & Dai, Xingyu & Wang, Qunwei & Zhou, Dequn, 2021. "A hybrid model for carbon price forecastingusing GARCH and long short-term memory network," Applied Energy, Elsevier, vol. 285(C).
- Cong, Ren & Lo, Alex Y., 2017. "Emission trading and carbon market performance in Shenzhen, China," Applied Energy, Elsevier, vol. 193(C), pages 414-425.
- Bollerslev, Tim, 1986.
"Generalized autoregressive conditional heteroskedasticity,"
Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
- Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
- Mikiko Kainuma & Yuzuru Matsuoka & Tsuneyuki Morita, 1999. "Analysis of Post-Kyoto Scenarios: The Asian-Pacific Integrated Model," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 207-220.
- E, Jianwei & Ye, Jimin & He, Lulu & Jin, Haihong, 2019. "Energy price prediction based on independent component analysis and gated recurrent unit neural network," Energy, Elsevier, vol. 189(C).
- Maria Mansanet-Bataller & Angel Pardo & Enric Valor, 2007. "CO2 Prices, Energy and Weather," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 73-92.
- Chevallier, Julien, 2011. "A model of carbon price interactions with macroeconomic and energy dynamics," Energy Economics, Elsevier, vol. 33(6), pages 1295-1312.
- Xu, Hua & Wang, Minggang & Jiang, Shumin & Yang, Weiguo, 2020. "Carbon price forecasting with complex network and extreme learning machine," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
- Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993.
"On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks,"
Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
- Lawrence R. Glosten & Ravi Jagannathan & David E. Runkle, 1993. "On the relation between the expected value and the volatility of the nominal excess return on stocks," Staff Report 157, Federal Reserve Bank of Minneapolis.
- Engle, Robert F & Lilien, David M & Robins, Russell P, 1987. "Estimating Time Varying Risk Premia in the Term Structure: The Arch-M Model," Econometrica, Econometric Society, vol. 55(2), pages 391-407, March.
- Sun, Wei & Zhang, Chongchong, 2018. "Analysis and forecasting of the carbon price using multi—resolution singular value decomposition and extreme learning machine optimized by adaptive whale optimization algorithm," Applied Energy, Elsevier, vol. 231(C), pages 1354-1371.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Huang, Yumeng & Dai, Xingyu & Wang, Qunwei & Zhou, Dequn, 2021. "A hybrid model for carbon price forecastingusing GARCH and long short-term memory network," Applied Energy, Elsevier, vol. 285(C).
- Zhou, Kaile & Li, Yiwen, 2019. "Influencing factors and fluctuation characteristics of China’s carbon emission trading price," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 459-474.
- Nader Trabelsi & Aviral Kumar Tiwari, 2023. "CO2 Emission Allowances Risk Prediction with GAS and GARCH Models," Computational Economics, Springer;Society for Computational Economics, vol. 61(2), pages 775-805, February.
- Byun, Suk Joon & Cho, Hangjun, 2013. "Forecasting carbon futures volatility using GARCH models with energy volatilities," Energy Economics, Elsevier, vol. 40(C), pages 207-221.
- Zhehao Huang & Benhuan Nie & Yuqiao Lan & Changhong Zhang, 2025. "A Decomposition-Integration Framework of Carbon Price Forecasting Based on Econometrics and Machine Learning Methods," Mathematics, MDPI, vol. 13(3), pages 1-31, January.
- Chang, Chia-Lin & Hsu, Hui-Kuang, 2013. "Modelling Volatility Size Effects for Firm Performance: The Impact of Chinese Tourists to Taiwan," MPRA Paper 45691, University Library of Munich, Germany.
- repec:wyi:journl:002087 is not listed on IDEAS
- Asai, Manabu & McAleer, Michael, 2015.
"Leverage and feedback effects on multifactor Wishart stochastic volatility for option pricing,"
Journal of Econometrics, Elsevier, vol. 187(2), pages 436-446.
- Manabu Asai & Michael McAleer, 2013. "Leverage and Feedback E ects on Multifactor Wishart Stochastic Volatility for Option Pricing," Documentos de Trabajo del ICAE 2013-02, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Manabu Asai & Michael McAleer, 2013. "Leverage and Feedback Effects on Multifactor Wishart Stochastic Volatility for Option Pricing," KIER Working Papers 840, Kyoto University, Institute of Economic Research.
- Manabu Asai & Michael McAleer, 2013. "Leverage and Feedback Effects on Multifactor Wishart Stochastic Volatility for Option Pricing," Tinbergen Institute Discussion Papers 13-003/III, Tinbergen Institute.
- D Büttner & B. Hayo, 2012.
"EMU-related news and financial markets in the Czech Republic, Hungary and Poland,"
Applied Economics, Taylor & Francis Journals, vol. 44(31), pages 4037-4053, November.
- David Büttner & Bernd Hayo, 2008. "EMU-related News and Financial Markets in the Czech Republic, Hungary and Poland," MAGKS Papers on Economics 200815, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
- Bernd Hayo & David Buettner, 2011. "EMU-related News and Financial Markets in the Czech Republic, Hungary and Poland," Post-Print hal-00716632, HAL.
- Dutta, Shantanu & Essaddam, Naceur & Kumar, Vinod & Saadi, Samir, 2017. "How does electronic trading affect efficiency of stock market and conditional volatility? Evidence from Toronto Stock Exchange," Research in International Business and Finance, Elsevier, vol. 39(PB), pages 867-877.
- Christensen, Bent Jesper & Nielsen, Morten Ørregaard & Zhu, Jie, 2010.
"Long memory in stock market volatility and the volatility-in-mean effect: The FIEGARCH-M Model,"
Journal of Empirical Finance, Elsevier, vol. 17(3), pages 460-470, June.
- Bent Jesper Christensen & Morten Ørregaard Nielsen & Jie Zhu, 2007. "Long Memory in Stock Market Volatility and the Volatility-in-Mean Effect: The FIEGARCH-M Model," CREATES Research Papers 2007-10, Department of Economics and Business Economics, Aarhus University.
- Bent Jesper Christensen & Jie Zhu & Morten Ø. Nielsen, 2009. "Long Memory In Stock Market Volatility And The Volatility-in-mean Effect: The Fiegarch-m Model," Working Paper 1207, Economics Department, Queen's University.
- Huang, Wenyang & Zhao, Jianyu & Wang, Xiaokang, 2024. "Model-driven multimodal LSTM-CNN for unbiased structural forecasting of European Union allowances open-high-low-close price," Energy Economics, Elsevier, vol. 132(C).
- Lukáš Frýd, 2018. "Asymetrie během finančních krizí: asymetrická volatilita převyšuje důležitost asymetrické korelace [Asymmetry of Financial Time Series During the Financial Crisis: Asymmetric Volatility Outperforms," Politická ekonomie, Prague University of Economics and Business, vol. 2018(3), pages 302-329.
- Changli He & Annastiina Silvennoinen & Timo Teräsvirta, 2008.
"Parameterizing Unconditional Skewness in Models for Financial Time Series,"
Journal of Financial Econometrics, Oxford University Press, vol. 6(2), pages 208-230, Spring.
- Changli He & Annastiina Silvennoinen & Timo Teräsvirta, 2005. "Parameterizing Unconditional Skewness in Models for Financial Time Series," Research Paper Series 169, Quantitative Finance Research Centre, University of Technology, Sydney.
- Changli He & Annastiina Silvennoinen & Timo Teräsvirta, 2008. "Parameterizing unconditional skewness in models for financial time series," CREATES Research Papers 2008-07, Department of Economics and Business Economics, Aarhus University.
- Siem Jan Koopman & Eugenie Hol Uspensky, 2002.
"The stochastic volatility in mean model: empirical evidence from international stock markets,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(6), pages 667-689.
- Siem Jan Koopman & Eugenie Hol Uspensky, 2002. "The stochastic volatility in mean model: empirical evidence from international stock markets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(6), pages 667-689, December.
- Hafner, Christian M. & Herwartz, Helmut, 1999. "Time-varying market price of risk in the CAPM: Approaches, empirical evidence and implications," SFB 373 Discussion Papers 1999,22, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
- Li, Qi & Yang, Jian & Hsiao, Cheng & Chang, Young-Jae, 2005. "The relationship between stock returns and volatility in international stock markets," Journal of Empirical Finance, Elsevier, vol. 12(5), pages 650-665, December.
- Mehmet Sahiner, 2022. "Forecasting volatility in Asian financial markets: evidence from recursive and rolling window methods," SN Business & Economics, Springer, vol. 2(10), pages 1-74, October.
- Marcin Fałdziński & Piotr Fiszeder & Witold Orzeszko, 2020. "Forecasting Volatility of Energy Commodities: Comparison of GARCH Models with Support Vector Regression," Energies, MDPI, vol. 14(1), pages 1-18, December.
- Chang, Kai & Chen, Rongda & Chevallier, Julien, 2018. "Market fragmentation, liquidity measures and improvement perspectives from China's emissions trading scheme pilots," Energy Economics, Elsevier, vol. 75(C), pages 249-260.
- Wang, Xinya & Liu, Huifang & Huang, Shupei, 2019. "Identification of the daily seasonality in gold returns and volatilities: Evidence from Shanghai and London," Resources Policy, Elsevier, vol. 61(C), pages 522-531.
More about this item
Keywords
carbon price fluctuations; carbon price forecasting; GARCH-LSTM hybrid model; long short-term memory neural network;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:4:p:1588-:d:1338535. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.