IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v184y2016icp1374-1388.html
   My bibliography  Save this item

Booster heat pumps and central heat pumps in district heating

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Brunt, Nicholas & Duquette, Jean & O'Brien, William, 2023. "Techno-economic and environmental performance of two state-of-the-art solar-assisted district energy system topologies," Energy, Elsevier, vol. 276(C).
  2. Cai, Hanmin & You, Shi & Wang, Jiawei & Bindner, Henrik W. & Klyapovskiy, Sergey, 2018. "Technical assessment of electric heat boosters in low-temperature district heating based on combined heat and power analysis," Energy, Elsevier, vol. 150(C), pages 938-949.
  3. Dominković, D.F. & Bačeković, I. & Sveinbjörnsson, D. & Pedersen, A.S. & Krajačić, G., 2017. "On the way towards smart energy supply in cities: The impact of interconnecting geographically distributed district heating grids on the energy system," Energy, Elsevier, vol. 137(C), pages 941-960.
  4. Selva Calixto & Marco Cozzini & Giampaolo Manzolini, 2021. "Modelling of an Existing Neutral Temperature District Heating Network: Detailed and Approximate Approaches," Energies, MDPI, vol. 14(2), pages 1-16, January.
  5. Chang, Miguel & Thellufsen, Jakob Zink & Zakeri, Behnam & Pickering, Bryn & Pfenninger, Stefan & Lund, Henrik & Østergaard, Poul Alberg, 2021. "Trends in tools and approaches for modelling the energy transition," Applied Energy, Elsevier, vol. 290(C).
  6. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
  7. Doračić, Borna & Pukšec, Tomislav & Schneider, Daniel Rolph & Duić, Neven, 2020. "The effect of different parameters of the excess heat source on the levelized cost of excess heat," Energy, Elsevier, vol. 201(C).
  8. Østergaard, Poul Alberg & Andersen, Anders N., 2021. "Variable taxes promoting district heating heat pump flexibility," Energy, Elsevier, vol. 221(C).
  9. Hannah Mareike Marczinkowski & Poul Alberg Østergaard & Søren Roth Djørup, 2019. "Transitioning Island Energy Systems—Local Conditions, Development Phases, and Renewable Energy Integration," Energies, MDPI, vol. 12(18), pages 1-20, September.
  10. Sandberg, Eli & Sneum, Daniel Møller & Trømborg, Erik, 2018. "Framework conditions for Nordic district heating - Similarities and differences, and why Norway sticks out," Energy, Elsevier, vol. 149(C), pages 105-119.
  11. Zühlsdorf, B. & Meesenburg, W. & Ommen, T.S. & Thorsen, J.E. & Markussen, W.B. & Elmegaard, B., 2018. "Improving the performance of booster heat pumps using zeotropic mixtures," Energy, Elsevier, vol. 154(C), pages 390-402.
  12. Aunedi, Marko & Pantaleo, Antonio Marco & Kuriyan, Kamal & Strbac, Goran & Shah, Nilay, 2020. "Modelling of national and local interactions between heat and electricity networks in low-carbon energy systems," Applied Energy, Elsevier, vol. 276(C).
  13. Hrvoje Dorotić & Kristijan Čuljak & Josip Miškić & Tomislav Pukšec & Neven Duić, 2022. "Technical and Economic Assessment of Supermarket and Power Substation Waste Heat Integration into Existing District Heating Systems," Energies, MDPI, vol. 15(5), pages 1-29, February.
  14. Welsch, Bastian & Göllner-Völker, Laura & Schulte, Daniel O. & Bär, Kristian & Sass, Ingo & Schebek, Liselotte, 2018. "Environmental and economic assessment of borehole thermal energy storage in district heating systems," Applied Energy, Elsevier, vol. 216(C), pages 73-90.
  15. Vinnemeier, Philipp & Wirsum, Manfred & Malpiece, Damien & Bove, Roberto, 2016. "Integration of heat pumps into thermal plants for creation of large-scale electricity storage capacities," Applied Energy, Elsevier, vol. 184(C), pages 506-522.
  16. Riccardo Toffanin & Paola Caputo & Marco Belliardi & Vinicio Curti, 2022. "Low and Ultra-Low Temperature District Heating Equipped by Heat Pumps—An Analysis of the Best Operative Conditions for a Swiss Case Study," Energies, MDPI, vol. 15(9), pages 1-19, May.
  17. Dominic Samoita & Charles Nzila & Poul Alberg Østergaard & Arne Remmen, 2020. "Barriers and Solutions for Increasing the Integration of Solar Photovoltaic in Kenya’s Electricity Mix," Energies, MDPI, vol. 13(20), pages 1-17, October.
  18. Pavičević, Matija & Novosel, Tomislav & Pukšec, Tomislav & Duić, Neven, 2017. "Hourly optimization and sizing of district heating systems considering building refurbishment – Case study for the city of Zagreb," Energy, Elsevier, vol. 137(C), pages 1264-1276.
  19. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
  20. Narula, Kapil & Chambers, Jonathan & Streicher, Kai N. & Patel, Martin K., 2019. "Strategies for decarbonising the Swiss heating system," Energy, Elsevier, vol. 169(C), pages 1119-1131.
  21. Pieper, Henrik & Krupenski, Igor & Brix Markussen, Wiebke & Ommen, Torben & Siirde, Andres & Volkova, Anna, 2021. "Method of linear approximation of COP for heat pumps and chillers based on thermodynamic modelling and off-design operation," Energy, Elsevier, vol. 230(C).
  22. Ommen, Torben & Thorsen, Jan Eric & Markussen, Wiebke Brix & Elmegaard, Brian, 2017. "Performance of ultra low temperature district heating systems with utility plant and booster heat pumps," Energy, Elsevier, vol. 137(C), pages 544-555.
  23. Østergaard, Dorte Skaarup & Smith, Kevin Michael & Tunzi, Michele & Svendsen, Svend, 2022. "Low-temperature operation of heating systems to enable 4th generation district heating: A review," Energy, Elsevier, vol. 248(C).
  24. Andersen, Anders N. & Østergaard, Poul Alberg, 2018. "A method for assessing support schemes promoting flexibility at district energy plants," Applied Energy, Elsevier, vol. 225(C), pages 448-459.
  25. Józef Paska & Tomasz Surma & Paweł Terlikowski & Krzysztof Zagrajek, 2020. "Electricity Generation from Renewable Energy Sources in Poland as a Part of Commitment to the Polish and EU Energy Policy," Energies, MDPI, vol. 13(16), pages 1-31, August.
  26. Andersen, Anders N. & Østergaard, Poul Alberg, 2019. "Analytic versus solver-based calculated daily operations of district energy plants," Energy, Elsevier, vol. 175(C), pages 333-344.
  27. Averfalk, Helge & Werner, Sven, 2018. "Novel low temperature heat distribution technology," Energy, Elsevier, vol. 145(C), pages 526-539.
  28. Zhu, Tingting & Ommen, Torben & Meesenburg, Wiebke & Thorsen, Jan Eric & Elmegaard, Brian, 2021. "Steady state behavior of a booster heat pump for hot water supply in ultra-low temperature district heating network," Energy, Elsevier, vol. 237(C).
  29. Marina, A. & Spoelstra, S. & Zondag, H.A. & Wemmers, A.K., 2021. "An estimation of the European industrial heat pump market potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
  30. Levihn, Fabian, 2017. "CHP and heat pumps to balance renewable power production: Lessons from the district heating network in Stockholm," Energy, Elsevier, vol. 137(C), pages 670-678.
  31. Majidi Nezhad, M. & Groppi, D. & Marzialetti, P. & Fusilli, L. & Laneve, G. & Cumo, F. & Garcia, D. Astiaso, 2019. "Wind energy potential analysis using Sentinel-1 satellite: A review and a case study on Mediterranean islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 499-513.
  32. Michele Tunzi & Matthieu Ruysschaert & Svend Svendsen & Kevin Michael Smith, 2020. "Double Loop Network for Combined Heating and Cooling in Low Heat Density Areas," Energies, MDPI, vol. 13(22), pages 1-24, November.
  33. Østergaard, Poul Alberg & Andersen, Anders N., 2018. "Economic feasibility of booster heat pumps in heat pump-based district heating systems," Energy, Elsevier, vol. 155(C), pages 921-929.
  34. Bloess, Andreas & Schill, Wolf-Peter & Zerrahn, Alexander, 2018. "Power-to-heat for renewable energy integration: A review of technologies, modeling approaches, and flexibility potentials," Applied Energy, Elsevier, vol. 212(C), pages 1611-1626.
  35. Meesenburg, Wiebke & Ommen, Torben & Thorsen, Jan Eric & Elmegaard, Brian, 2020. "Economic feasibility of ultra-low temperature district heating systems in newly built areas supplied by renewable energy," Energy, Elsevier, vol. 191(C).
  36. Hast, Aira & Rinne, Samuli & Syri, Sanna & Kiviluoma, Juha, 2017. "The role of heat storages in facilitating the adaptation of district heating systems to large amount of variable renewable electricity," Energy, Elsevier, vol. 137(C), pages 775-788.
  37. Yang, Xiaochen & Svendsen, Svend, 2018. "Ultra-low temperature district heating system with central heat pump and local boosters for low-heat-density area: Analyses on a real case in Denmark," Energy, Elsevier, vol. 159(C), pages 243-251.
  38. Dorotić, Hrvoje & Pukšec, Tomislav & Schneider, Daniel Rolph & Duić, Neven, 2021. "Evaluation of district heating with regard to individual systems – Importance of carbon and cost allocation in cogeneration units," Energy, Elsevier, vol. 221(C).
  39. Volkova, A. & Koduvere, H. & Pieper, H., 2022. "Large-scale heat pumps for district heating systems in the Baltics: Potential and impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
  40. Henrik Lund & Finn Arler & Poul Alberg Østergaard & Frede Hvelplund & David Connolly & Brian Vad Mathiesen & Peter Karnøe, 2017. "Simulation versus Optimisation: Theoretical Positions in Energy System Modelling," Energies, MDPI, vol. 10(7), pages 1-17, June.
  41. Aliana, Arnau & Chang, Miguel & Østergaard, Poul Alberg & Victoria, Marta & Andersen, Anders N., 2022. "Performance assessment of using various solar radiation data in modelling large-scale solar thermal systems integrated in district heating networks," Renewable Energy, Elsevier, vol. 190(C), pages 699-712.
  42. Rämä, Miika & Wahlroos, Mikko, 2018. "Introduction of new decentralised renewable heat supply in an existing district heating system," Energy, Elsevier, vol. 154(C), pages 68-79.
  43. Danica Djurić Ilić, 2020. "Classification of Measures for Dealing with District Heating Load Variations—A Systematic Review," Energies, MDPI, vol. 14(1), pages 1-27, December.
  44. Pieper, Henrik & Ommen, Torben & Kjær Jensen, Jonas & Elmegaard, Brian & Brix Markussen, Wiebke, 2020. "Comparison of COP estimation methods for large-scale heat pumps used in energy planning," Energy, Elsevier, vol. 205(C).
  45. Mengting Jiang & Camilo Rindt & David M. J. Smeulders, 2022. "Optimal Planning of Future District Heating Systems—A Review," Energies, MDPI, vol. 15(19), pages 1-38, September.
  46. Ziemele, Jelena & Talcis, Normunds & Osis, Ugis & Dace, Elina, 2021. "A methodology for selecting a sustainable development strategy for connecting low heat density consumers to a district heating system by cascading of heat carriers," Energy, Elsevier, vol. 230(C).
  47. Lund, Henrik & Østergaard, Poul Alberg & Chang, Miguel & Werner, Sven & Svendsen, Svend & Sorknæs, Peter & Thorsen, Jan Eric & Hvelplund, Frede & Mortensen, Bent Ole Gram & Mathiesen, Brian Vad & Boje, 2018. "The status of 4th generation district heating: Research and results," Energy, Elsevier, vol. 164(C), pages 147-159.
  48. Rehman, Hassam ur & Hirvonen, Janne & Sirén, Kai, 2018. "Performance comparison between optimized design of a centralized and semi-decentralized community size solar district heating system," Applied Energy, Elsevier, vol. 229(C), pages 1072-1094.
  49. Jalil-Vega, F. & Hawkes, A.D., 2018. "Spatially resolved model for studying decarbonisation pathways for heat supply and infrastructure trade-offs," Applied Energy, Elsevier, vol. 210(C), pages 1051-1072.
  50. Lund, Henrik & Østergaard, Poul Alberg & Nielsen, Tore Bach & Werner, Sven & Thorsen, Jan Eric & Gudmundsson, Oddgeir & Arabkoohsar, Ahmad & Mathiesen, Brian Vad, 2021. "Perspectives on fourth and fifth generation district heating," Energy, Elsevier, vol. 227(C).
  51. Østergaard, Poul Alberg & Jantzen, Jan & Marczinkowski, Hannah Mareike & Kristensen, Michael, 2019. "Business and socioeconomic assessment of introducing heat pumps with heat storage in small-scale district heating systems," Renewable Energy, Elsevier, vol. 139(C), pages 904-914.
  52. Pieper, Henrik & Ommen, Torben & Elmegaard, Brian & Brix Markussen, Wiebke, 2019. "Assessment of a combination of three heat sources for heat pumps to supply district heating," Energy, Elsevier, vol. 176(C), pages 156-170.
  53. Hast, Aira & Syri, Sanna & Lekavičius, Vidas & Galinis, Arvydas, 2018. "District heating in cities as a part of low-carbon energy system," Energy, Elsevier, vol. 152(C), pages 627-639.
  54. Milana Treshcheva & Irina Anikina & Vitaly Sergeev & Sergey Skulkin & Dmitry Treshchev, 2021. "Selection of Heat Pump Capacity Used at Thermal Power Plants under Electricity Market Operating Conditions," Energies, MDPI, vol. 14(1), pages 1-25, January.
  55. Fabian Ochs & Mara Magni & Georgios Dermentzis, 2022. "Integration of Heat Pumps in Buildings and District Heating Systems—Evaluation on a Building and Energy System Level," Energies, MDPI, vol. 15(11), pages 1-33, May.
  56. Meha, Drilon & Pfeifer, Antun & Duić, Neven & Lund, Henrik, 2020. "Increasing the integration of variable renewable energy in coal-based energy system using power to heat technologies: The case of Kosovo," Energy, Elsevier, vol. 212(C).
  57. Ximo Masip & Emilio Navarro-Peris & José M. Corberán, 2020. "Influence of the Thermal Energy Storage Strategy on the Performance of a Booster Heat Pump for Domestic Hot Water Production System Based on the Use of Low Temperature Heat Source," Energies, MDPI, vol. 13(24), pages 1-24, December.
  58. Steffen Nielsen & Lars Grundahl, 2018. "District Heating Expansion Potential with Low-Temperature and End-Use Heat Savings," Energies, MDPI, vol. 11(2), pages 1-17, January.
  59. Kleinebrahm, Max & Weinand, Jann Michael & Naber, Elias & McKenna, Russell & Ardone, Armin, 2023. "Analysing municipal energy system transformations in line with national greenhouse gas reduction strategies," Applied Energy, Elsevier, vol. 332(C).
  60. Arabkoohsar, A., 2019. "Non-uniform temperature district heating system with decentralized heat pumps and standalone storage tanks," Energy, Elsevier, vol. 170(C), pages 931-941.
  61. Bloess, Andreas & Schill, Wolf-Peter & Zerrahn, Alexander, 2018. "Power-to-heat for renewable energy integration: A review of technologies, modeling approaches, and flexibility potentials," Applied Energy, Elsevier, vol. 212(C), pages 1611-1626.
  62. Sorknæs, Peter & Østergaard, Poul Alberg & Thellufsen, Jakob Zinck & Lund, Henrik & Nielsen, Steffen & Djørup, Søren & Sperling, Karl, 2020. "The benefits of 4th generation district heating in a 100% renewable energy system," Energy, Elsevier, vol. 213(C).
  63. Zhang, Xi & Strbac, Goran & Teng, Fei & Djapic, Predrag, 2018. "Economic assessment of alternative heat decarbonisation strategies through coordinated operation with electricity system – UK case study," Applied Energy, Elsevier, vol. 222(C), pages 79-91.
  64. Klemm, Christian & Vennemann, Peter, 2021. "Modeling and optimization of multi-energy systems in mixed-use districts: A review of existing methods and approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
  65. Dorotić, Hrvoje & Ban, Marko & Pukšec, Tomislav & Duić, Neven, 2020. "Impact of wind penetration in electricity markets on optimal power-to-heat capacities in a local district heating system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
  66. Ringkjøb, Hans-Kristian & Haugan, Peter M. & Solbrekke, Ida Marie, 2018. "A review of modelling tools for energy and electricity systems with large shares of variable renewables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 440-459.
  67. Dorotić, Hrvoje & Pukšec, Tomislav & Duić, Neven, 2019. "Economical, environmental and exergetic multi-objective optimization of district heating systems on hourly level for a whole year," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
  68. Lund, Henrik & Duic, Neven & Østergaard, Poul Alberg & Mathiesen, Brian Vad, 2018. "Future district heating systems and technologies: On the role of smart energy systems and 4th generation district heating," Energy, Elsevier, vol. 165(PA), pages 614-619.
  69. Hvelplund, Frede & Krog, Louise & Nielsen, Steffen & Terkelsen, Elsebeth & Madsen, Kristian Brun, 2019. "Policy paradigms for optimal residential heat savings in a transition to 100% renewable energy systems," Energy Policy, Elsevier, vol. 134(C).
  70. Víctor M. Soltero & Ricardo Chacartegui & Carlos Ortiz & Gonzalo Quirosa, 2018. "Techno-Economic Analysis of Rural 4th Generation Biomass District Heating," Energies, MDPI, vol. 11(12), pages 1-20, November.
  71. Fabian Bühler & Stefan Petrović & Torben Ommen & Fridolin Müller Holm & Henrik Pieper & Brian Elmegaard, 2018. "Identification and Evaluation of Cases for Excess Heat Utilisation Using GIS," Energies, MDPI, vol. 11(4), pages 1-24, March.
  72. Kumar, Shravan & Thakur, Jagruti & Gardumi, Francesco, 2022. "Techno-economic modelling and optimisation of excess heat and cold recovery for industries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
  73. Østergaard, Poul Alberg & Andersen, Anders N. & Sorknæs, Peter, 2022. "The business-economic energy system modelling tool energyPRO," Energy, Elsevier, vol. 257(C).
  74. Milana Treshcheva & Irina Anikina & Dmitry Treshchev & Sergey Skulkin, 2022. "Heat Pump Capacity Selection for TPPs with Various Efficiency Levels," Energies, MDPI, vol. 15(12), pages 1-19, June.
  75. Arabkoohsar, Ahmad & Alsagri, Ali Sulaiman, 2020. "Thermodynamic analysis of ultralow-temperature district heating system with shared power heat pumps and triple-pipes," Energy, Elsevier, vol. 194(C).
  76. Hennessy, Jay & Li, Hailong & Wallin, Fredrik & Thorin, Eva, 2018. "Towards smart thermal grids: Techno-economic feasibility of commercial heat-to-power technologies for district heating," Applied Energy, Elsevier, vol. 228(C), pages 766-776.
  77. Martina Capone & Elisa Guelpa & Vittorio Verda, 2023. "Optimal Installation of Heat Pumps in Large District Heating Networks," Energies, MDPI, vol. 16(3), pages 1-23, February.
  78. Vivian, Jacopo & Emmi, Giuseppe & Zarrella, Angelo & Jobard, Xavier & Pietruschka, Dirk & De Carli, Michele, 2018. "Evaluating the cost of heat for end users in ultra low temperature district heating networks with booster heat pumps," Energy, Elsevier, vol. 153(C), pages 788-800.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.