IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i22p6091-d448594.html
   My bibliography  Save this article

Double Loop Network for Combined Heating and Cooling in Low Heat Density Areas

Author

Listed:
  • Michele Tunzi

    (Department of Civil Engineering, Technical University of Denmark, Brovej, Building 118, DK-2800 Kgs Lyngby, Denmark)

  • Matthieu Ruysschaert

    (Department of Civil Engineering, Technical University of Denmark, Brovej, Building 118, DK-2800 Kgs Lyngby, Denmark)

  • Svend Svendsen

    (Department of Civil Engineering, Technical University of Denmark, Brovej, Building 118, DK-2800 Kgs Lyngby, Denmark)

  • Kevin Michael Smith

    (Department of Civil Engineering, Technical University of Denmark, Brovej, Building 118, DK-2800 Kgs Lyngby, Denmark)

Abstract

This study investigated a double loop network operated with ultra-low supply/return temperatures of 45/25 °C as a novel solution for low heat-density areas in Denmark and compared the proposed concept with a typical tree network and with individual heat pumps to each end-users rather than district networks. It is a pump-driven system, where the separate circulation of supply and return flow increased the flexibility of the system to integrate and displace heating and cooling energy along the network. Despite the increased use of central and local water pumps to operate and control the system, the simulated overall pump energy consumption was 0.9% of the total energy consumption. This was also an advantage at the design stage as the larger pressure gradient, up to 570 Pa/m, allowed minimal pipe diameters. In addition, the authors proposed the installation of electrically heated vacuum-insulated micro tanks of 10 L on the primary side of each building substation as a supplementary heating solution to meet the comfort and hygiene requirements for domestic hot water (DHW). This, combined with supply water circulation in the loop network, served as a technical solution to remove the need for bypass valves during summer periods with no load in the network. The proposed double loop system reduced distribution heat losses from 19% to 12% of the total energy consumption and decreased average return temperatures from 33 °C to 23 °C compared to the tree network. While excess heat recovery can be limited due to hydraulic issues in tree networks, the study investigated the double loop concept for scenarios with heat source temperatures of 30 °C and 45 °C. The double loop network was cost-competitive when considering the required capital and operating costs. Furthermore, district networks outperformed individual heat pump solutions for low-heat density areas when waste heat was available locally. Finally, although few in Denmark envisage residential cooling as a priority, this study investigated the potential of embedding heating and cooling in the same infrastructure. It found that the return line could deliver cold water to the end-users and that the maximum cooling power was 1.4 kW to each end-user, which corresponded to 47% of the total peak heat demand used to dimension the double loop network.

Suggested Citation

  • Michele Tunzi & Matthieu Ruysschaert & Svend Svendsen & Kevin Michael Smith, 2020. "Double Loop Network for Combined Heating and Cooling in Low Heat Density Areas," Energies, MDPI, vol. 13(22), pages 1-24, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:6091-:d:448594
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/22/6091/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/22/6091/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Werner, Sven, 2016. "European space cooling demands," Energy, Elsevier, vol. 110(C), pages 148-156.
    2. Yang, Xiaochen & Li, Hongwei & Svendsen, Svend, 2016. "Evaluations of different domestic hot water preparing methods with ultra-low-temperature district heating," Energy, Elsevier, vol. 109(C), pages 248-259.
    3. Tol, H.İ. & Svendsen, S., 2012. "Improving the dimensioning of piping networks and network layouts in low-energy district heating systems connected to low-energy buildings: A case study in Roskilde, Denmark," Energy, Elsevier, vol. 38(1), pages 276-290.
    4. Brand, Lisa & Calvén, Alexandra & Englund, Jessica & Landersjö, Henrik & Lauenburg, Patrick, 2014. "Smart district heating networks – A simulation study of prosumers’ impact on technical parameters in distribution networks," Applied Energy, Elsevier, vol. 129(C), pages 39-48.
    5. Rämä, Miika & Wahlroos, Mikko, 2018. "Introduction of new decentralised renewable heat supply in an existing district heating system," Energy, Elsevier, vol. 154(C), pages 68-79.
    6. Bünning, Felix & Wetter, Michael & Fuchs, Marcus & Müller, Dirk, 2018. "Bidirectional low temperature district energy systems with agent-based control: Performance comparison and operation optimization," Applied Energy, Elsevier, vol. 209(C), pages 502-515.
    7. Averfalk, Helge & Werner, Sven, 2018. "Novel low temperature heat distribution technology," Energy, Elsevier, vol. 145(C), pages 526-539.
    8. Helge Averfalk & Fredric Ottermo & Sven Werner, 2019. "Pipe Sizing for Novel Heat Distribution Technology," Energies, MDPI, vol. 12(7), pages 1-17, April.
    9. Hansen, C.H. & Gudmundsson, O. & Detlefsen, N., 2019. "Cost efficiency of district heating for low energy buildings of the future," Energy, Elsevier, vol. 177(C), pages 77-86.
    10. Lund, Henrik & Werner, Sven & Wiltshire, Robin & Svendsen, Svend & Thorsen, Jan Eric & Hvelplund, Frede & Mathiesen, Brian Vad, 2014. "4th Generation District Heating (4GDH)," Energy, Elsevier, vol. 68(C), pages 1-11.
    11. Möller, Bernd & Wiechers, Eva & Persson, Urban & Grundahl, Lars & Connolly, David, 2018. "Heat Roadmap Europe: Identifying local heat demand and supply areas with a European thermal atlas," Energy, Elsevier, vol. 158(C), pages 281-292.
    12. Brand, Marek & Rosa, Alessandro Dalla & Svendsen, Svend, 2014. "Energy-efficient and cost-effective in-house substations bypass for improving thermal and DHW (domestic hot water) comfort in bathrooms in low-energy buildings supplied by low-temperature district hea," Energy, Elsevier, vol. 67(C), pages 256-267.
    13. Lund, Henrik & Østergaard, Poul Alberg & Chang, Miguel & Werner, Sven & Svendsen, Svend & Sorknæs, Peter & Thorsen, Jan Eric & Hvelplund, Frede & Mortensen, Bent Ole Gram & Mathiesen, Brian Vad & Boje, 2018. "The status of 4th generation district heating: Research and results," Energy, Elsevier, vol. 164(C), pages 147-159.
    14. Buffa, Simone & Cozzini, Marco & D’Antoni, Matteo & Baratieri, Marco & Fedrizzi, Roberto, 2019. "5th generation district heating and cooling systems: A review of existing cases in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 504-522.
    15. Østergaard, Poul Alberg & Andersen, Anders N., 2016. "Booster heat pumps and central heat pumps in district heating," Applied Energy, Elsevier, vol. 184(C), pages 1374-1388.
    16. Christensen, Morten Herget & Li, Rongling & Pinson, Pierre, 2020. "Demand side management of heat in smart homes: Living-lab experiments," Energy, Elsevier, vol. 195(C).
    17. Ommen, Torben & Markussen, Wiebke Brix & Elmegaard, Brian, 2016. "Lowering district heating temperatures – Impact to system performance in current and future Danish energy scenarios," Energy, Elsevier, vol. 94(C), pages 273-291.
    18. Tunzi, Michele & Østergaard, Dorte Skaarup & Svendsen, Svend & Boukhanouf, Rabah & Cooper, Edward, 2016. "Method to investigate and plan the application of low temperature district heating to existing hydraulic radiator systems in existing buildings," Energy, Elsevier, vol. 113(C), pages 413-421.
    19. Østergaard, Poul Alberg & Andersen, Anders N., 2018. "Economic feasibility of booster heat pumps in heat pump-based district heating systems," Energy, Elsevier, vol. 155(C), pages 921-929.
    20. Werner, Sven, 2017. "District heating and cooling in Sweden," Energy, Elsevier, vol. 126(C), pages 419-429.
    21. Werner, Sven, 2017. "International review of district heating and cooling," Energy, Elsevier, vol. 137(C), pages 617-631.
    22. Andrei David & Brian Vad Mathiesen & Helge Averfalk & Sven Werner & Henrik Lund, 2017. "Heat Roadmap Europe: Large-Scale Electric Heat Pumps in District Heating Systems," Energies, MDPI, vol. 10(4), pages 1-18, April.
    23. Guo, Xiaofeng & Goumba, Alain Pascal, 2018. "Air source heat pump for domestic hot water supply: Performance comparison between individual and building scale installations," Energy, Elsevier, vol. 164(C), pages 794-802.
    24. Braas, Hagen & Jordan, Ulrike & Best, Isabelle & Orozaliev, Janybek & Vajen, Klaus, 2020. "District heating load profiles for domestic hot water preparation with realistic simultaneity using DHWcalc and TRNSYS," Energy, Elsevier, vol. 201(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Yurun & Wang, Shugang & Wang, Jihong & Zhang, Tengfei & Ma, Zhenjun & Jiang, Shuang, 2024. "Key district heating technologies for building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    2. Østergaard, Dorte Skaarup & Smith, Kevin Michael & Tunzi, Michele & Svendsen, Svend, 2022. "Low-temperature operation of heating systems to enable 4th generation district heating: A review," Energy, Elsevier, vol. 248(C).
    3. Jebamalai, Joseph Maria & Marlein, Kurt & Laverge, Jelle, 2022. "Design and cost comparison of district heating and cooling (DHC) network configurations using ring topology – A case study," Energy, Elsevier, vol. 258(C).
    4. Li, Xiang & Yilmaz, Selin & Patel, Martin K. & Chambers, Jonathan, 2023. "Techno-economic analysis of fifth-generation district heating and cooling combined with seasonal borehole thermal energy storage," Energy, Elsevier, vol. 285(C).
    5. Mengting Jiang & Camilo Rindt & David M. J. Smeulders, 2022. "Optimal Planning of Future District Heating Systems—A Review," Energies, MDPI, vol. 15(19), pages 1-38, September.
    6. Lund, Henrik & Østergaard, Poul Alberg & Nielsen, Tore Bach & Werner, Sven & Thorsen, Jan Eric & Gudmundsson, Oddgeir & Arabkoohsar, Ahmad & Mathiesen, Brian Vad, 2021. "Perspectives on fourth and fifth generation district heating," Energy, Elsevier, vol. 227(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    2. Lund, Henrik & Østergaard, Poul Alberg & Chang, Miguel & Werner, Sven & Svendsen, Svend & Sorknæs, Peter & Thorsen, Jan Eric & Hvelplund, Frede & Mortensen, Bent Ole Gram & Mathiesen, Brian Vad & Boje, 2018. "The status of 4th generation district heating: Research and results," Energy, Elsevier, vol. 164(C), pages 147-159.
    3. Østergaard, Dorte Skaarup & Smith, Kevin Michael & Tunzi, Michele & Svendsen, Svend, 2022. "Low-temperature operation of heating systems to enable 4th generation district heating: A review," Energy, Elsevier, vol. 248(C).
    4. Averfalk, Helge & Werner, Sven, 2018. "Novel low temperature heat distribution technology," Energy, Elsevier, vol. 145(C), pages 526-539.
    5. Danica Djurić Ilić, 2020. "Classification of Measures for Dealing with District Heating Load Variations—A Systematic Review," Energies, MDPI, vol. 14(1), pages 1-27, December.
    6. Averfalk, Helge & Werner, Sven, 2020. "Economic benefits of fourth generation district heating," Energy, Elsevier, vol. 193(C).
    7. Alessandro Guzzini & Marco Pellegrini & Edoardo Pelliconi & Cesare Saccani, 2020. "Low Temperature District Heating: An Expert Opinion Survey," Energies, MDPI, vol. 13(4), pages 1-34, February.
    8. Mengting Jiang & Camilo Rindt & David M. J. Smeulders, 2022. "Optimal Planning of Future District Heating Systems—A Review," Energies, MDPI, vol. 15(19), pages 1-38, September.
    9. Arabkoohsar, Ahmad & Alsagri, Ali Sulaiman, 2020. "Thermodynamic analysis of ultralow-temperature district heating system with shared power heat pumps and triple-pipes," Energy, Elsevier, vol. 194(C).
    10. Gerald Schweiger & Fabian Kuttin & Alfred Posch, 2019. "District Heating Systems: An Analysis of Strengths, Weaknesses, Opportunities, and Threats of the 4GDH," Energies, MDPI, vol. 12(24), pages 1-15, December.
    11. Persson, Urban & Wiechers, Eva & Möller, Bernd & Werner, Sven, 2019. "Heat Roadmap Europe: Heat distribution costs," Energy, Elsevier, vol. 176(C), pages 604-622.
    12. Michael-Allan Millar & Bruce Elrick & Greg Jones & Zhibin Yu & Neil M. Burnside, 2020. "Roadblocks to Low Temperature District Heating," Energies, MDPI, vol. 13(22), pages 1-21, November.
    13. Østergaard, Poul Alberg & Andersen, Anders N., 2018. "Economic feasibility of booster heat pumps in heat pump-based district heating systems," Energy, Elsevier, vol. 155(C), pages 921-929.
    14. Lund, Henrik & Østergaard, Poul Alberg & Nielsen, Tore Bach & Werner, Sven & Thorsen, Jan Eric & Gudmundsson, Oddgeir & Arabkoohsar, Ahmad & Mathiesen, Brian Vad, 2021. "Perspectives on fourth and fifth generation district heating," Energy, Elsevier, vol. 227(C).
    15. Marco Pellegrini & Augusto Bianchini, 2018. "The Innovative Concept of Cold District Heating Networks: A Literature Review," Energies, MDPI, vol. 11(1), pages 1-16, January.
    16. Brange, Lisa & Lauenburg, Patrick & Sernhed, Kerstin & Thern, Marcus, 2017. "Bottlenecks in district heating networks and how to eliminate them – A simulation and cost study," Energy, Elsevier, vol. 137(C), pages 607-616.
    17. Reiners, Tobias & Gross, Michel & Altieri, Lisa & Wagner, Hermann-Josef & Bertsch, Valentin, 2021. "Heat pump efficiency in fifth generation ultra-low temperature district heating networks using a wastewater heat source," Energy, Elsevier, vol. 236(C).
    18. Pieper, Henrik & Krupenski, Igor & Brix Markussen, Wiebke & Ommen, Torben & Siirde, Andres & Volkova, Anna, 2021. "Method of linear approximation of COP for heat pumps and chillers based on thermodynamic modelling and off-design operation," Energy, Elsevier, vol. 230(C).
    19. Dorotić, Hrvoje & Pukšec, Tomislav & Schneider, Daniel Rolph & Duić, Neven, 2021. "Evaluation of district heating with regard to individual systems – Importance of carbon and cost allocation in cogeneration units," Energy, Elsevier, vol. 221(C).
    20. Narula, Kapil & Chambers, Jonathan & Streicher, Kai N. & Patel, Martin K., 2019. "Strategies for decarbonising the Swiss heating system," Energy, Elsevier, vol. 169(C), pages 1119-1131.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:6091-:d:448594. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.