IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v386y2025ics0306261925003204.html
   My bibliography  Save this article

Feasibility of integrating excess heat from power-to-methanol: Case study of a Danish district heating network

Author

Listed:
  • Nielsen, Frederik Dahl
  • Skov, Iva Ridjan
  • Sorknæs, Peter

Abstract

This research investigates the feasibility of integrating excess heat (EH) generated from Power-to-Methanol (PtM) production into district heating (DH) systems, focusing on Sønderborg Municipality in Denmark as a case study. The aim is to determine the economic feasibility and broader energy system benefits of utilising excess heat generated at key stages of the PtM process, including electrolysis, methanol synthesis, and carbon capture. The study develops and evaluates nine main scenarios, along with numerous sub-scenarios, which compare different PtM facility configurations and placements. Specifically, it contrasts the benefits of siting these facilities near renewable energy sources versus closer to district heating systems. By examining these placement strategies, the study provides a detailed analysis of the trade-offs involved in maximising PtM market viability and minimising costs and fuel consumption in the DH systems. It is found that incorporating EH from PtM into DH can lead to reductions in both the operational costs (up to 18 %) and the primary energy consumption (up to 23 %) of the DH supply by displacing fossil fuel and biomass use. Additionally, the sale of excess heat can reduce the levelized cost of energy for PtM up to 10 % under optimal conditions. Importantly, the research demonstrates that strategic placement and effective policy incentives, such as grid tariff exemptions, are critical to enhancing the financial viability of PtM.

Suggested Citation

  • Nielsen, Frederik Dahl & Skov, Iva Ridjan & Sorknæs, Peter, 2025. "Feasibility of integrating excess heat from power-to-methanol: Case study of a Danish district heating network," Applied Energy, Elsevier, vol. 386(C).
  • Handle: RePEc:eee:appene:v:386:y:2025:i:c:s0306261925003204
    DOI: 10.1016/j.apenergy.2025.125590
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925003204
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125590?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pia Manz & Katerina Kermeli & Urban Persson & Marius Neuwirth & Tobias Fleiter & Wina Crijns-Graus, 2021. "Decarbonizing District Heating in EU-27 + UK: How Much Excess Heat Is Available from Industrial Sites?," Sustainability, MDPI, vol. 13(3), pages 1-34, January.
    2. Alberto Alamia & Behzad Partoon & Eoghan Rattigan & Gorm Brunn Andresen, 2024. "Optimizing hydrogen and e-methanol production through Power-to-X integration in biogas plants," Papers 2406.00442, arXiv.org.
    3. Rämä, Miika & Wahlroos, Mikko, 2018. "Introduction of new decentralised renewable heat supply in an existing district heating system," Energy, Elsevier, vol. 154(C), pages 68-79.
    4. Andersen, Anders N. & Østergaard, Poul Alberg, 2019. "Analytic versus solver-based calculated daily operations of district energy plants," Energy, Elsevier, vol. 175(C), pages 333-344.
    5. Magnanelli, Elisa & Mosby, Jostein & Becidan, Michael, 2021. "Scenarios for carbon capture integration in a waste-to-energy plant," Energy, Elsevier, vol. 227(C).
    6. Dominković, Dominik Franjo & Wahlroos, Mikko & Syri, Sanna & Pedersen, Allan Schrøder, 2018. "Influence of different technologies on dynamic pricing in district heating systems: Comparative case studies," Energy, Elsevier, vol. 153(C), pages 136-148.
    7. Dominković, D.F. & Bačeković, I. & Sveinbjörnsson, D. & Pedersen, A.S. & Krajačić, G., 2017. "On the way towards smart energy supply in cities: The impact of interconnecting geographically distributed district heating grids on the energy system," Energy, Elsevier, vol. 137(C), pages 941-960.
    8. Kountouris, Ioannis & Langer, Lissy & Bramstoft, Rasmus & Münster, Marie & Keles, Dogan, 2023. "Power-to-X in energy hubs: A Danish case study of renewable fuel production," Energy Policy, Elsevier, vol. 175(C).
    9. Johansen, Katinka & Werner, Sven, 2022. "Something is sustainable in the state of Denmark: A review of the Danish district heating sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    10. Sveinbjörnsson, Dadi & Ben Amer-Allam, Sara & Hansen, Anders Bavnhøj & Algren, Loui & Pedersen, Allan Schrøder, 2017. "Energy supply modelling of a low-CO2 emitting energy system: Case study of a Danish municipality," Applied Energy, Elsevier, vol. 195(C), pages 922-941.
    11. Fragaki, Aikaterini & Andersen, Anders N., 2011. "Conditions for aggregation of CHP plants in the UK electricity market and exploration of plant size," Applied Energy, Elsevier, vol. 88(11), pages 3930-3940.
    12. Brynolf, Selma & Taljegard, Maria & Grahn, Maria & Hansson, Julia, 2018. "Electrofuels for the transport sector: A review of production costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1887-1905.
    13. Lund, Henrik & Thellufsen, Jakob Zinck & Sorknæs, Peter & Mathiesen, Brian Vad & Chang, Miguel & Madsen, Poul Thøis & Kany, Mikkel Strunge & Skov, Iva Ridjan, 2022. "Smart energy Denmark. A consistent and detailed strategy for a fully decarbonized society," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    14. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    15. Thellufsen, Jakob Zinck & Lund, Henrik, 2016. "Roles of local and national energy systems in the integration of renewable energy," Applied Energy, Elsevier, vol. 183(C), pages 419-429.
    16. Østergaard, Poul Alberg & Andersen, Anders N., 2023. "Optimal heat storage in district energy plants with heat pumps and electrolysers," Energy, Elsevier, vol. 275(C).
    17. Søren Djørup & Karl Sperling & Steffen Nielsen & Poul Alborg Østergaard & Jakob Zinck Thellufsen & Peter Sorknæs & Henrik Lund & David Drysdale, 2020. "District Heating Tariffs, Economic Optimisation and Local Strategies during Radical Technological Change," Energies, MDPI, vol. 13(5), pages 1-15, March.
    18. Moreno, Diana & Nielsen, Steffen & Sorknæs, Peter & Lund, Henrik & Thellufsen, Jakob Zinck & Mathiesen, Brian Vad, 2024. "Exploring the location and use of baseload district heating supply. What can current heat sources tell us about future opportunities?," Energy, Elsevier, vol. 288(C).
    19. Østergaard, Poul Alberg & Andersen, Anders N. & Sorknæs, Peter, 2022. "The business-economic energy system modelling tool energyPRO," Energy, Elsevier, vol. 257(C).
    20. Østergaard, Poul Alberg & Andersen, Anders N., 2016. "Booster heat pumps and central heat pumps in district heating," Applied Energy, Elsevier, vol. 184(C), pages 1374-1388.
    21. Sorknæs, Peter & Lund, Henrik & Andersen, Anders N., 2015. "Future power market and sustainable energy solutions – The treatment of uncertainties in the daily operation of combined heat and power plants," Applied Energy, Elsevier, vol. 144(C), pages 129-138.
    22. Fallahnejad, Mostafa & Kranzl, Lukas & Haas, Reinhard & Hummel, Marcus & Müller, Andreas & García, Luis Sánchez & Persson, Urban, 2024. "District heating potential in the EU-27: Evaluating the impacts of heat demand reduction and market share growth," Applied Energy, Elsevier, vol. 353(PB).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Østergaard, Poul Alberg & Andersen, Anders N., 2021. "Variable taxes promoting district heating heat pump flexibility," Energy, Elsevier, vol. 221(C).
    3. Østergaard, Poul Alberg & Andersen, Anders N. & Sorknæs, Peter, 2022. "The business-economic energy system modelling tool energyPRO," Energy, Elsevier, vol. 257(C).
    4. Sorknæs, Peter & Østergaard, Poul Alberg & Thellufsen, Jakob Zinck & Lund, Henrik & Nielsen, Steffen & Djørup, Søren & Sperling, Karl, 2020. "The benefits of 4th generation district heating in a 100% renewable energy system," Energy, Elsevier, vol. 213(C).
    5. Christensen, Toke Borg Kjær & Lund, Henrik & Sorknæs, Peter, 2024. "The role of thermal energy storages in future smart energy systems," Energy, Elsevier, vol. 313(C).
    6. Andersen, Anders N. & Østergaard, Poul Alberg, 2018. "A method for assessing support schemes promoting flexibility at district energy plants," Applied Energy, Elsevier, vol. 225(C), pages 448-459.
    7. Kleinebrahm, Max & Weinand, Jann Michael & Naber, Elias & McKenna, Russell & Ardone, Armin, 2023. "Analysing municipal energy system transformations in line with national greenhouse gas reduction strategies," Applied Energy, Elsevier, vol. 332(C).
    8. Manz, Pia & Billerbeck, Anna & Kök, Ali & Fallahnejad, Mostafa & Fleiter, Tobias & Kranzl, Lukas & Braungardt, Sibylle & Eichhammer, Wolfgang, 2024. "Spatial analysis of renewable and excess heat potentials for climate-neutral district heating in Europe," Renewable Energy, Elsevier, vol. 224(C).
    9. Aliana, Arnau & Chang, Miguel & Østergaard, Poul Alberg & Victoria, Marta & Andersen, Anders N., 2022. "Performance assessment of using various solar radiation data in modelling large-scale solar thermal systems integrated in district heating networks," Renewable Energy, Elsevier, vol. 190(C), pages 699-712.
    10. Østergaard, Poul Alberg & Andersen, Anders N., 2018. "Economic feasibility of booster heat pumps in heat pump-based district heating systems," Energy, Elsevier, vol. 155(C), pages 921-929.
    11. Bačeković, Ivan & Østergaard, Poul Alberg, 2018. "Local smart energy systems and cross-system integration," Energy, Elsevier, vol. 151(C), pages 812-825.
    12. Jalil-Vega, F. & Hawkes, A.D., 2018. "Spatially resolved model for studying decarbonisation pathways for heat supply and infrastructure trade-offs," Applied Energy, Elsevier, vol. 210(C), pages 1051-1072.
    13. Lund, Henrik & Østergaard, Poul Alberg & Chang, Miguel & Werner, Sven & Svendsen, Svend & Sorknæs, Peter & Thorsen, Jan Eric & Hvelplund, Frede & Mortensen, Bent Ole Gram & Mathiesen, Brian Vad & Boje, 2018. "The status of 4th generation district heating: Research and results," Energy, Elsevier, vol. 164(C), pages 147-159.
    14. Østergaard, Poul Alberg & Andersen, Anders N., 2023. "Optimal heat storage in district energy plants with heat pumps and electrolysers," Energy, Elsevier, vol. 275(C).
    15. Mikulčić, Hrvoje & Ridjan Skov, Iva & Dominković, Dominik Franjo & Wan Alwi, Sharifah Rafidah & Manan, Zainuddin Abdul & Tan, Raymond & Duić, Neven & Hidayah Mohamad, Siti Nur & Wang, Xuebin, 2019. "Flexible Carbon Capture and Utilization technologies in future energy systems and the utilization pathways of captured CO2," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    16. Vrain, Maxime & Dussartre, Virginie & Lhuillier, Nicolas & Girard, Robin, 2024. "A spatially-explicit method for generating prospective district heating scenarios," Energy, Elsevier, vol. 313(C).
    17. Johansen, Katinka & Johra, Hicham, 2022. "A niche technique overlooked in the Danish district heating sector? Exploring socio-technical perspectives of short-term thermal energy storage for building energy flexibility," Energy, Elsevier, vol. 256(C).
    18. Sperling, K. & Arler, F., 2020. "Local government innovation in the energy sector: A study of key actors’ strategies and arguments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    19. Lund, Henrik & Østergaard, Poul Alberg & Nielsen, Tore Bach & Werner, Sven & Thorsen, Jan Eric & Gudmundsson, Oddgeir & Arabkoohsar, Ahmad & Mathiesen, Brian Vad, 2021. "Perspectives on fourth and fifth generation district heating," Energy, Elsevier, vol. 227(C).
    20. Thellufsen, Jakob Zinck & Lund, Henrik & Mathiesen, Brian Vad & Østergaard, Poul Alberg & Sorknæs, Peter & Nielsen, Steffen & Madsen, Poul Thøis & Andresen, Gorm Bruun, 2024. "Cost and system effects of nuclear power in carbon-neutral energy systems," Applied Energy, Elsevier, vol. 371(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:386:y:2025:i:c:s0306261925003204. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.