IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v168y2016icp636-648.html
   My bibliography  Save this item

An experimental investigation of hydrodynamics of a fixed OWC Wave Energy Converter

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Gubesch, Eric & Abdussamie, Nagi & Penesis, Irene & Chin, Christopher, 2022. "Maximising the hydrodynamic performance of offshore oscillating water column wave energy converters," Applied Energy, Elsevier, vol. 308(C).
  2. Oikonomou, Charikleia L.G. & Gomes, Rui P.F. & Gato, Luís M.C., 2021. "Unveiling the potential of using a spar-buoy oscillating-water-column wave energy converter for low-power stand-alone applications," Applied Energy, Elsevier, vol. 292(C).
  3. Xueyan Li & Zhen Yu & Hengliang Qu & Moyao Yang & Hongyuan Shi & Zhenhua Zhang, 2023. "Experimental Study on the Aerodynamic Performance and Wave Energy Capture Efficiency of Square and Curved OWC Wave Energy Conversion Devices," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
  4. Wang, Chen & Zhang, Yongliang & Deng, Zhengzhi, 2022. "Wave power extraction for an oscillating water column device consisting of a surging front and back lip-wall: An analytical study," Renewable Energy, Elsevier, vol. 184(C), pages 100-114.
  5. Medina Rodríguez, Ayrton Alfonso & Silva Casarín, Rodolfo & Blanco Ilzarbe, Jesús María, 2022. "The influence of oblique waves on the hydrodynamic efficiency of an onshore OWC wave energy converter," Renewable Energy, Elsevier, vol. 183(C), pages 687-707.
  6. Shahabi-Nejad, Meysam & Nikseresht, Amir H., 2022. "A comprehensive investigation of a hybrid wave energy converter including oscillating water column and horizontal floating cylinder," Energy, Elsevier, vol. 243(C).
  7. Çelik, Anıl & Altunkaynak, Abdüsselam, 2021. "An in depth experimental investigation into effects of incident wave characteristics front wall opening and PTO damping on the water column displacement and air differential pressure in an OWC chamber," Energy, Elsevier, vol. 230(C).
  8. Xiang Li & Qing Xiao, 2022. "A Numerical Study on an Oscillating Water Column Wave Energy Converter with Hyper-Elastic Material," Energies, MDPI, vol. 15(22), pages 1-25, November.
  9. Lorenzo Ciappi & Lapo Cheli & Irene Simonetti & Alessandro Bianchini & Giampaolo Manfrida & Lorenzo Cappietti, 2020. "Wave-to-Wire Model of an Oscillating-Water-Column Wave Energy Converter and Its Application to Mediterranean Energy Hot-Spots," Energies, MDPI, vol. 13(21), pages 1-28, October.
  10. Trivedi, Kshma & Koley, Santanu, 2023. "Mathematical modeling of oscillating water column wave energy converter devices placed over an undulated seabed in a two-layer fluid system," Renewable Energy, Elsevier, vol. 216(C).
  11. Elhanafi, Ahmed & Kim, Chan Joo, 2018. "Experimental and numerical investigation on wave height and power take–off damping effects on the hydrodynamic performance of an offshore–stationary OWC wave energy converter," Renewable Energy, Elsevier, vol. 125(C), pages 518-528.
  12. Gubesch, Eric & Abdussamie, Nagi & Penesis, Irene & Chin, Christopher, 2022. "Effects of mooring configurations on the hydrodynamic performance of a floating offshore oscillating water column wave energy converter," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
  13. Cheng, Yong & Xi, Chen & Dai, Saishuai & Ji, Chunyan & Cocard, Margot & Yuan, Zhiming & Incecik, Atilla, 2021. "Performance characteristics and parametric analysis of a novel multi-purpose platform combining a moonpool-type floating breakwater and an array of wave energy converters," Applied Energy, Elsevier, vol. 292(C).
  14. Jeong-Seok Kim & Kyong-Hwan Kim & Jiyong Park & Sewan Park & Seung Ho Shin, 2021. "A Numerical Study on Hydrodynamic Energy Conversions of OWC-WEC with the Linear Decomposition Method under Irregular Waves," Energies, MDPI, vol. 14(6), pages 1-17, March.
  15. Elhanafi, Ahmed & Fleming, Alan & Macfarlane, Gregor & Leong, Zhi, 2017. "Underwater geometrical impact on the hydrodynamic performance of an offshore oscillating water column–wave energy converter," Renewable Energy, Elsevier, vol. 105(C), pages 209-231.
  16. Li, Xiaofan & Chen, ChienAn & Li, Qiaofeng & Xu, Lin & Liang, Changwei & Ngo, Khai & Parker, Robert G. & Zuo, Lei, 2020. "A compact mechanical power take-off for wave energy converters: Design, analysis, and test verification," Applied Energy, Elsevier, vol. 278(C).
  17. Chen, Jing & Wen, Hongjie & Wang, Yongxue & Wang, Guoyu, 2021. "A correlation study of optimal chamber width with the relative front wall draught of onshore OWC device," Energy, Elsevier, vol. 225(C).
  18. Altunkaynak, Abdüsselam & Çelik, Anıl, 2022. "A novel Geno-fuzzy based model for hydrodynamic efficiency prediction of a land-fixed oscillating water column for various front wall openings, power take-off dampings and incident wave steepnesses," Renewable Energy, Elsevier, vol. 196(C), pages 99-110.
  19. Zhang, Na & Li, Shuai & Wu, Yongsheng & Wang, Keh-Han & Zhang, Qinghe & You, Zai-Jin & Wang, Jin, 2020. "Effects of sea ice on wave energy flux distribution in the Bohai Sea," Renewable Energy, Elsevier, vol. 162(C), pages 2330-2343.
  20. Ayrton Alfonso Medina Rodríguez & Gregorio Posada Vanegas & Rodolfo Silva Casarín & Edgar Gerardo Mendoza Baldwin & Beatriz Edith Vega Serratos & Felipe Ernesto Puc Cutz & Enrique Alejandro Mangas Che, 2022. "Experimental Investigation of the Hydrodynamic Performance of Land-Fixed Nearshore and Onshore Oscillating Water Column Systems with a Thick Front Wall," Energies, MDPI, vol. 15(7), pages 1-26, March.
  21. Nicholas Ulm & Zhenhua Huang & Patrick Cross, 2023. "Experimental Study of a Fixed OWC-Type Wave Energy Converter with a Heave Plate and V-Shaped Channels for Intermediate-Water-Depth Applications," Energies, MDPI, vol. 16(16), pages 1-30, August.
  22. Kharati-Koopaee, Masoud & Fathi-Kelestani, Arman, 2020. "Assessment of oscillating water column performance: Influence of wave steepness at various chamber lengths and bottom slopes," Renewable Energy, Elsevier, vol. 147(P1), pages 1595-1608.
  23. Elhanafi, Ahmed & Macfarlane, Gregor & Fleming, Alan & Leong, Zhi, 2017. "Experimental and numerical investigations on the hydrodynamic performance of a floating–moored oscillating water column wave energy converter," Applied Energy, Elsevier, vol. 205(C), pages 369-390.
  24. Mia, Mohammad Rashed & Zhao, Ming & Wu, Helen & Munir, Adnan, 2021. "Numerical investigation of scaling effect in two-dimensional oscillating water column wave energy devices for harvesting wave energy," Renewable Energy, Elsevier, vol. 178(C), pages 1381-1397.
  25. Jianxing Yu & Zhenmian Li & Yang Yu & Shuai Hao & Yiqin Fu & Yupeng Cui & Lixin Xu & Han Wu, 2020. "Design and Performance Assessment of Multi-Use Offshore Tension Leg Platform Equipped with an Embedded Wave Energy Converter System," Energies, MDPI, vol. 13(15), pages 1-21, August.
  26. Guo, Baoming & Ning, Dezhi & Wang, Rongquan & Ding, Boyin, 2021. "Hydrodynamics of an oscillating water column WEC - Breakwater integrated system with a pitching front-wall," Renewable Energy, Elsevier, vol. 176(C), pages 67-80.
  27. Carlo, Lilia & Iuppa, Claudio & Faraci, Carla, 2023. "A numerical-experimental study on the hydrodynamic performance of a U-OWC wave energy converter," Renewable Energy, Elsevier, vol. 203(C), pages 89-101.
  28. Dezhi Ning & Rongquan Wang & Chongwei Zhang, 2017. "Numerical Simulation of a Dual-Chamber Oscillating Water Column Wave Energy Converter," Sustainability, MDPI, vol. 9(9), pages 1-12, September.
  29. Gang, Ao & Guo, Baoming & Hu, Zhongbo & Hu, Rui, 2022. "Performance analysis of a coast – OWC wave energy converter integrated system," Applied Energy, Elsevier, vol. 311(C).
  30. Çelik, Anıl & Altunkaynak, Abdüsselam, 2020. "Determination of damping coefficient experimentally and mathematical vibration modelling of OWC surface fluctuations," Renewable Energy, Elsevier, vol. 147(P1), pages 1909-1920.
  31. Jin, Huaqing & Zhang, Haicheng & Xu, Daolin & Jun, Ding & Ze, Sun, 2022. "Low-frequency energy capture and water wave attenuation of a hybrid WEC-breakwater with nonlinear stiffness," Renewable Energy, Elsevier, vol. 196(C), pages 1029-1047.
  32. Elhanafi, Ahmed & Macfarlane, Gregor & Fleming, Alan & Leong, Zhi, 2017. "Scaling and air compressibility effects on a three-dimensional offshore stationary OWC wave energy converter," Applied Energy, Elsevier, vol. 189(C), pages 1-20.
  33. Ning, De-zhi & Zhou, Yu & Mayon, Robert & Johanning, Lars, 2020. "Experimental investigation on the hydrodynamic performance of a cylindrical dual-chamber Oscillating Water Column device," Applied Energy, Elsevier, vol. 260(C).
  34. Wang, Chen & Zhang, Yongliang & Deng, Zhengzhi, 2022. "A novel dual-chamber oscillating water column system with dual lip-wall pitching motions for wave energy conversion," Energy, Elsevier, vol. 246(C).
  35. Milad Shadman & Corbiniano Silva & Daiane Faller & Zhijia Wu & Luiz Paulo de Freitas Assad & Luiz Landau & Carlos Levi & Segen F. Estefen, 2019. "Ocean Renewable Energy Potential, Technology, and Deployments: A Case Study of Brazil," Energies, MDPI, vol. 12(19), pages 1-37, September.
  36. Khan, Mohamin B.M. & Behera, Harekrushna, 2021. "Impact of sloping porous seabed on the efficiency of an OWC against oblique waves," Renewable Energy, Elsevier, vol. 173(C), pages 1027-1039.
  37. Ching-Piao Tsai & Chun-Han Ko & Ying-Chi Chen, 2018. "Investigation on Performance of a Modified Breakwater-Integrated OWC Wave Energy Converter," Sustainability, MDPI, vol. 10(3), pages 1-20, February.
  38. Xu, Conghao & He, Yuanyuan & Yao, Yu & Zuo, Jun, 2023. "Experimental and numerical study of a circular OWC with a U-shaped duct for wave energy conversion in long waves: Hydrodynamic characteristics and viscous energy loss," Renewable Energy, Elsevier, vol. 215(C).
  39. Fang He & Mingjia Li & Zhenhua Huang, 2016. "An Experimental Study of Pile-Supported OWC-Type Breakwaters: Energy Extraction and Vortex-Induced Energy Loss," Energies, MDPI, vol. 9(7), pages 1-15, July.
  40. Juanjuan Wang & Zhongxian Chen & Fei Zhang, 2021. "A Review of the Optimization Design and Control for Ocean Wave Power Generation Systems," Energies, MDPI, vol. 15(1), pages 1-17, December.
  41. Guo, Bingyong & Ringwood, John V., 2021. "Geometric optimisation of wave energy conversion devices: A survey," Applied Energy, Elsevier, vol. 297(C).
  42. Wang, Chen & Zhang, Yongliang & Deng, Zhengzhi, 2021. "Theoretical analysis on hydrodynamic performance for a dual-chamber oscillating water column device with a pitching front lip-wall," Energy, Elsevier, vol. 226(C).
  43. Deng, Zhengzhi & Wang, Chen & Wang, Peng & Higuera, Pablo & Wang, Ruoqian, 2019. "Hydrodynamic performance of an offshore-stationary OWC device with a horizontal bottom plate: Experimental and numerical study," Energy, Elsevier, vol. 187(C).
  44. Rezanejad, K. & Guedes Soares, C. & López, I. & Carballo, R., 2017. "Experimental and numerical investigation of the hydrodynamic performance of an oscillating water column wave energy converter," Renewable Energy, Elsevier, vol. 106(C), pages 1-16.
  45. Ning, De-zhi & Wang, Rong-quan & Chen, Li-fen & Sun, Ke, 2019. "Experimental investigation of a land-based dual-chamber OWC wave energy converter," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 48-60.
  46. Wang, Chen & Zhang, Yongliang & Deng, Zhengzhi, 2022. "Hydrodynamic performance of a heaving oscillating water column device restrained by a spring-damper system," Renewable Energy, Elsevier, vol. 187(C), pages 331-346.
  47. Tunde Aderinto & Hua Li, 2019. "Review on Power Performance and Efficiency of Wave Energy Converters," Energies, MDPI, vol. 12(22), pages 1-24, November.
  48. Wang, Chen & Zhang, Yongliang, 2021. "Hydrodynamic performance of an offshore Oscillating Water Column device mounted over an immersed horizontal plate: A numerical study," Energy, Elsevier, vol. 222(C).
  49. Elhanafi, Ahmed & Fleming, Alan & Macfarlane, Gregor & Leong, Zhi, 2016. "Numerical energy balance analysis for an onshore oscillating water column–wave energy converter," Energy, Elsevier, vol. 116(P1), pages 539-557.
  50. Ren, Junqing & Jin, Peng & Liu, Yingyi & Zang, Jun, 2021. "Wave attenuation and focusing by a parabolic arc pontoon breakwater," Energy, Elsevier, vol. 217(C).
  51. Wang, Chen & Zhang, Yongliang, 2021. "Numerical investigation on the wave power extraction for a 3D dual-chamber oscillating water column system composed of two closely connected circular sub-units," Applied Energy, Elsevier, vol. 295(C).
  52. Deng, Zhengzhi & Wang, Lin & Zhao, Xizeng & Wang, Peng, 2020. "Wave power extraction by a nearshore oscillating water column converter with a surging lip-wall," Renewable Energy, Elsevier, vol. 146(C), pages 662-674.
  53. Elhanafi, Ahmed & Macfarlane, Gregor & Ning, Dezhi, 2018. "Hydrodynamic performance of single–chamber and dual–chamber offshore–stationary Oscillating Water Column devices using CFD," Applied Energy, Elsevier, vol. 228(C), pages 82-96.
  54. Cheng, Yong & Du, Weiming & Dai, Saishuai & Ji, Chunyan & Collu, Maurizio & Cocard, Margot & Cui, Lin & Yuan, Zhiming & Incecik, Atilla, 2022. "Hydrodynamic characteristics of a hybrid oscillating water column-oscillating buoy wave energy converter integrated into a π-type floating breakwater," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
  55. Singh, Uddish & Abdussamie, Nagi & Hore, Jack, 2020. "Hydrodynamic performance of a floating offshore OWC wave energy converter: An experimental study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
  56. Liu, Zhen & Xu, Chuanli & Zhang, Xiaoxia & Ning, Dezhi, 2023. "Experimental study on an isolated oscillating water column wave energy converting device in oblique waves," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
  57. Mia, Mohammad Rashed & Zhao, Ming & Wu, Helen & Munir, Adnan, 2022. "Numerical investigation of offshore oscillating water column devices," Renewable Energy, Elsevier, vol. 191(C), pages 380-393.
  58. Naik, Nikita & Gayathri, R. & Behera, H. & Tsai, Chia-Cheng, 2023. "Wave power extraction by a dual OWC chambers over an undulated bottom," Renewable Energy, Elsevier, vol. 216(C).
  59. Calheiros-Cabral, Tomás & Clemente, Daniel & Rosa-Santos, Paulo & Taveira-Pinto, Francisco & Ramos, Victor & Morais, Tiago & Cestaro, Henrique, 2020. "Evaluation of the annual electricity production of a hybrid breakwater-integrated wave energy converter," Energy, Elsevier, vol. 213(C).
  60. Zhao, Xuanlie & Zhang, Lidong & Li, Mingwei & Johanning, Lars, 2021. "Experimental investigation on the hydrodynamic performance of a multi-chamber OWC-breakwater," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
  61. Tengen Murakami & Yasutaka Imai & Shuichi Nagata & Manabu Takao & Toshiaki Setoguchi, 2016. "Experimental Research on Primary and Secondary Conversion Efficiencies in an Oscillating Water Column-Type Wave Energy Converter," Sustainability, MDPI, vol. 8(8), pages 1-11, August.
  62. Zhou, Yu & Ning, Dezhi & Liang, Dongfang & Cai, Shuqun, 2021. "Nonlinear hydrodynamic analysis of an offshore oscillating water column wave energy converter," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
  63. Li, Liang & Cheng, Zhengshun & Yuan, Zhiming & Gao, Yan, 2018. "Short-term extreme response and fatigue damage of an integrated offshore renewable energy system," Renewable Energy, Elsevier, vol. 126(C), pages 617-629.
  64. Liu, Zhen & Xu, Chuanli & Kim, Kilwon & Choi, Jongsu & Hyun, Beom-soo, 2021. "An integrated numerical model for the chamber-turbine system of an oscillating water column wave energy converter," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
  65. Zhang, Xiantao & Tian, Xinliang & Xiao, Longfei & Li, Xin & Chen, Lifen, 2018. "Application of an adaptive bistable power capture mechanism to a point absorber wave energy converter," Applied Energy, Elsevier, vol. 228(C), pages 450-467.
  66. Mohapatra, Piyush & Vijay, K.G. & Bhattacharyya, Anirban & Sahoo, Trilochan, 2023. "Influence of distinct bottom geometries on the hydrodynamic performance of an OWC device," Energy, Elsevier, vol. 277(C).
  67. Ning, De-zhi & Mu, Di & Wang, Rong-quan & Mayon, Robert, 2023. "Experimental and numerical investigations on the solitary wave actions on a land-fixed OWC wave energy converter," Energy, Elsevier, vol. 282(C).
  68. Wang, Rong-quan & Ning, De-zhi, 2020. "Dynamic analysis of wave action on an OWC wave energy converter under the influence of viscosity," Renewable Energy, Elsevier, vol. 150(C), pages 578-588.
  69. Çelik, Anıl & Altunkaynak, Abdüsselam, 2019. "Experimental investigations on the performance of a fixed-oscillating water column type wave energy converter," Energy, Elsevier, vol. 188(C).
  70. Trivedi, Kshma & Koley, Santanu, 2023. "Performance of a hybrid wave energy converter device consisting of a piezoelectric plate and oscillating water column device placed over an undulated seabed," Applied Energy, Elsevier, vol. 333(C).
  71. Cheng, Yong & Ji, Chunyan & Zhai, Gangjun, 2019. "Fully nonlinear analysis incorporating viscous effects for hydrodynamics of an oscillating wave surge converter with nonlinear power take-off system," Energy, Elsevier, vol. 179(C), pages 1067-1081.
  72. Dai, Saishuai & Day, Sandy & Yuan, Zhiming & Wang, Haibin, 2019. "Investigation on the hydrodynamic scaling effect of an OWC type wave energy device using experiment and CFD simulation," Renewable Energy, Elsevier, vol. 142(C), pages 184-194.
  73. Dimitrios N. Konispoliatis, 2023. "The Effect of Hydrodynamics on the Power Efficiency of a Toroidal Oscillating Water Column Device," Sustainability, MDPI, vol. 15(16), pages 1-29, August.
  74. Medina Rodríguez, Ayrton Alfonso & Trivedi, Kshma & Koley, Santanu & Oderiz Martinez, Itxaso & Mendoza, Edgar & Posada Vanegas, Gregorio & Silva, Rodolfo, 2023. "Improved hydrodynamic performance of an OWC device based on a Helmholtz resonator," Energy, Elsevier, vol. 273(C).
  75. Xu, Conghao & Huang, Zhenhua, 2018. "A dual-functional wave-power plant for wave-energy extraction and shore protection: A wave-flume study," Applied Energy, Elsevier, vol. 229(C), pages 963-976.
  76. Ning, De-Zhi & Wang, Rong-Quan & Gou, Ying & Zhao, Ming & Teng, Bin, 2016. "Numerical and experimental investigation of wave dynamics on a land-fixed OWC device," Energy, Elsevier, vol. 115(P1), pages 326-337.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.