IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v208y2017icp878-888.html
   My bibliography  Save this article

Design and analysis of a new parallel-hybrid-excited linear vernier machine for oceanic wave power generation

Author

Listed:
  • Li, Wenlong
  • Ching, T.W.
  • Chau, K.T.

Abstract

This paper presents a parallel-hybrid-excited linear vernier machine (PHE-LVM) for direct-drive oceanic wave power generation. By equipping a set of field winding in the mover yoke, hybrid excitation for the proposed PHE-LVM is realized: the air-gap flux can be flexibly controlled via adjusting the magnitude and polarity of the DC current in the field winding. With this merit, the operating performances in the wave power generation, such as the output voltage, load capacity and power factor can be improved. Firstly, the proposed PHE-LVM topology based on homopolar machine configuration is presented, with the consequent-pole PM poles mounted on the surface of the stator, while the DC field winding is wound around the mover yoke. Secondly, the operating principle of the proposed PHE-LVM is described with corresponding theoretical analysis. Thirdly, by using the 3-D finite element method, the power generation performances of the proposed PHE-LVM are evaluated. Finally, a prototype machine is also implemented and tested. Experimental results well agree with the analytical data.

Suggested Citation

  • Li, Wenlong & Ching, T.W. & Chau, K.T., 2017. "Design and analysis of a new parallel-hybrid-excited linear vernier machine for oceanic wave power generation," Applied Energy, Elsevier, vol. 208(C), pages 878-888.
  • Handle: RePEc:eee:appene:v:208:y:2017:i:c:p:878-888
    DOI: 10.1016/j.apenergy.2017.09.061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917313430
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.09.061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:208:y:2017:i:c:p:878-888. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.